Działanie turbogeneratorów elektrowni jądrowych i cieplnych towarzyszy wydzielanie ciepła, które przyczynia siędo nagrzania części składowych generatora i może doprowadzićdo sytuacji awaryjnej (pożar). W związku z tym, że turbogeneratory pracujądługo, ważnąrolęodgrywa proces ciągłego chłodzenia urządzeńgeneratora, ponieważjego przegrzanie może prowadzićdo awaryjnych reakcji łańcuchowych, pożarów, eksplozji itp. Analiza danych statystycznych dotyczących występowania sytuacji awaryjnych (pożarów) związanych z wyciekami wodoru z urządzeńtechnologicznych wskazuje na niewystarczające kwalifikacje operacyjnego personelu operacyjnego, niskąjakośćnaprawy sprzętu, błędy personelu naprawczego i naruszenie przez niego wymagańtechnicznych dotyczących naprawy sprzętu i ich systemów, wady konstrukcyjne urządzeńi systemów zapewniających jego działanie. Ustalono, że przyczynami sytuacji awaryjnych są: wyciek wodoru na skutek nieszczelności urządzeń, samozapłon wodoru, obecnośćprzestrzeni powietrznej w wyposażeniu turbogeneratora, naruszenie przepisów technologicznych, zanieczyszczenie wodoru wilgociąi zanieczyszczenia, rozhermetyzowanie korpusu generatora. Modelowanie procesu spalania wodoru podczas jego uwalniania z obudowy turbogeneratora przeprowadzono na przykładzie maszynowni elektrowni. Badania wykazały, że najdłuższy czas spalania wodoru nastąpi przy jego wypływaniu przez otwory o wielkości geometrycznej d0 z zakresu 0,05–0,1 m (50–100 mm). Przy większych wartościach wielkości geometrycznej otworu d0 > 0,1 m czas spalania wodoru jest nieznaczny, a przy wartościach d0 < 0,005 m długośćpalnika płomieniowego L nie przekracza 1,15 m. Wyniki przeprowadzonych badańpotwierdzają, że w wyniku uszkodzenia turbogeneratora może nastąpićspalenie wodoru w postaci płomienia pochodni. W obliczeniach ustalono potrzebęochrony przeciwpożarowej nośnych konstrukcji metalowych maszynowni, aby zapewnićgranicęodporności ogniowej co najmniej 45 minut pod krzywą węglowodorów.