Evolution of second-generation electromobility in public transport in Polish cities
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEEvolution of second-generation electromobility in public transport in Polish cities
Data publikacji: 31.03.2023
Prace Komisji Geografii Komunikacji PTG, 2023, 26 (1), s. 22 - 39
https://doi.org/10.4467/2543859XPKG.23.002.17399Autorzy
Evolution of second-generation electromobility in public transport in Polish cities
Transport activities are a significant factor in environmental pollution, especially in cities. Therefore, measures aimed at electrification of public transport are particularly important. The aim of the paper is to present the origins, status and development dynamics of electromobility in Polish cities, especially the second generation of electromobility, i.e. vehicles that do not require continuous connection to the energy source. In practice the second-generation electric vehicles can be identified with battery-powered vehicles, hydrogen and hybrid vehicles. The study was prepared on the basis of an analysis of literature, industry documents or development strategies. In addition, a database of information on zero- and low-emission vehicles in public transport (i.e. electric and hybrid buses) was compiled to analyse the phenomenon. The study shows that the implementation of electromobility in Poland has already emerged from the initial phase. The possibilities for developing battery technology vary in cities of different sizes. In 2021 in Poland, the share of low-emission buses in the public transport fleet was several times higher than that of electric vehicles among passenger vehicles. It is most likely that the Polish road to electromobility leads primarily through public transport. The following factors influencing the development of electromobility were identified: these were primarily EU and Polish legislation and regulations, the presence of manufacturers of rolling stock and electrotechnical equipment, and – at the local scale – organisational, economic and social issues.
Abdollahifar M., Doose S., Cavers H., Kwade A., 2023, Graphite Recycling from End-of-Life Lithium-Ion Batteries: Processes and Applications, Advanced Materials Technologies, 8, 224, 2200368, https://doi.org/10.1002/admt.202200368.
Adhikari M., Ghimire L. P., Kim Y., Aryal P., Khadka S. B., 2020, Identification and Analysis of Barriers against Electric Vehicle Use, Sustainability, 12, 4850, https://doi.org/10.3390/su12124850.
Altenburg T., Schamp E. W., Chaudhary A., 2016, The emergence of electromobility: Comparing technological pathways in France, Germany, China and India, Science and Public Policy, 43(4), 464-475, https://doi.org.10.1093/scipol/scv054.
Badea G., Felseghi R.A., Varlam M., Filote C., Culcer M., Iliescu M., Raboaca M. S., 2019, Design and Simulation of Romanian Solar Energy, Energies, 12, 74, https://doi.org/10.3390/en12010074.
Bartłomiejczyk M., Kołacz R., 2020, The reduction of auxiliaries power demand: The challenge for electromobility in public transportation, Journal of Cleaner Production, 252, 119776, https://doi.org/10.1016/j.jclepro.2019.119776.
Bartłomiejczyk M., Połom M., 2021, Possibilities for Developing Electromobility by Using Autonomously Powered Trolleybuses Based on the Example of Gdynia, Energies, 14, 2971. https://doi.org/10.3390/en14102971.
Beaudet A., Larouche F., Amouzegar K., Bouchard P., Zaghib K., 2020, Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials, Sustainability, 12, 5837; doi:10.3390/su12145837.
Benveniste G., Hallo R., Canals Casals L., Merino A., Amante B., 2018, Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility, Journal of Environmental Management, 226, 1-12, https://doi.org/10.1016/j.jenvman.2018.08.008.
Benveniste G., Sánchez A., Rallo H., Corchero C., Amante B., 2022, Comparative life cycle assessment of Li-Sulphur and Li-ion batteries for electric vehicles, Resources, Conservation & Recycling Advances, 15, 200086, https://doi.org/10.1016/j.rcradv.2022.200086.
Bernagozzi M., Georgoulas A., Miché N., Rouaud C., Marengo M., 2021, Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts, Applied Thermal Engineering, 194, 117061, https://doi.org/10.1016/j.applthermaleng.2021.117061.
Bi J., Wanga Y., Shaoa S., Cheng Y., 2018, Residual range estimation for battery electric vehicle based on radial basis T function neural network, Measurement, 128, 197-203, https://doi.org/10.1016/j.measurement.2018.06.054.
Borén S., 2020, Electric buses’ sustainability effects, noise, energy use, and costs, International Journal of Sustainable Transportation, 14, 12, 956-971, https://doi.org/10.1080/15568318.2019.1666324.
Chan K. H., Anawati J., Malik M., Azimi G., 2021, Closed-Loop Recycling of Lithium, Cobalt, Nickel, and Manganese from Waste Lithium-Ion Batteries of Electric Vehicles, ACS Sustainable Chem. Eng., 9, 12, 4398-4410, https://doi.org/10.1021/acssuschemeng.0c06869.
Council and Parliament strike provisional deal to create a sustainable life cycle for batteries, 9 December 2022, https://www.consilium.europa.eu/en/press/press-releases/2022/12/09/council-and-parliament-strike-provisional-deal-to-create-a-sustainable-life-cycle-for-batteries/.
Dobrzycki A., Filipiak M., Jajczyk J., 2017, Zasilanie układów ładowania akumulatorów autobusów elektrycznych, Electric Engineering, 92, 25-35, https://doi.org/10.21008/j.1897-0737.2017.92.0002.
Domański B., Guzik R., Gwosdz K., Kołoś A., Taczanowski J., 2016, European semi-periphery under environmental pressure: the case of urban public bus transportation and private bus-makers in Poland, Int. J. Automotive Technology and Management, 16, 3, 2016, 301-318, https://doi.org/10.1504/IJATM.2016.080786.
Drábik P., Krnáčová P., 2018, Socio-economic barriers and development opportunities of electromobility as key technological innovation of transportation, Int. J. Multidiscip. Bus. Sci., 4, 91-98.
Fasiecka O., Marek M., 2018, Odnawialne źródła energii a rozwój elektromobilności, Problemy Transportu i Logistyki, 4, 44, 7-14, https://doi.org/10.18276/ptl.2018.44-01.
Gandoman F. H., Ahmed E. M., Ali Z. M., Berecibar M., Zobaa A. F., Abdel Aleem S. H. E., 2021, Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study, Sustainability, 13, 11688, https://doi.org/10.3390/su132111688.
Grygar D., Kohánia M., Štefún R., Drgoňa P., 2019, Analysis of limiting factors of battery assisted trolleybuses, Transportation Research Procedia, 40, 229-235, https://doi.org/10.1016/j.trpro.2019.07.035.
Grzelec K., Okrój D., 2016, Perspektywy obsługi miast autobusami elektrycznymi na przykładzie Sopotu, Autobusy: Technika, Eksploatacja, Systemy Transportowe, 16, 26-32.
Guzik R., Kołoś A., Taczanowski J., Fiedeń Ł., Gwosdz K., Hetmańczyk K., Łodziński J., 2021, The Second Generation Electromobility in Polish Urban Public Transport: The Factors and Mechanisms of Spatial Development, Energies, 2021, 14, 7751, 1-28, https://doi.org/10.3390/en14227751.
Harris A., Soban D., Smyth B. M., Best R., 2020, A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies, Applied Energy, 261, 114422, https://doi.org/10.1016/j.apenergy.2019.114422.
He X., Zhang Sh., Ke W., Zheng Y., Zhou B., Liang X., Wu Y., 2018, Energy consumption and well-to-wheels air pollutant emissions of battery electric buses under complex operating conditions and implications on fleet electrification, Journal of Cleaner Production, 171, 714-722, https://doi.org/10.1016/j.jclepro.2017.10.017.
Hussain M. T., Sulaiman B. N., Hussain M. S., Jabir M., 2021, Optimal Management strategies to solve issues of grid having Electric Vehicles (EV): A review, J. Energy Storage, 33, 102114, https://doi.org/10.1016/j.est.2020.102114.
Jagiełło A., 2021, Elektromobilność w kształtowaniu drogowego transportu miejskiego w Polsce, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk.
Jóźwiak A., Guciewski Ł., Misztal A., 2018, Metoda rozmieszczenia infrastruktury ładowania autobusów elektrycznych w miejskim transporcie zbiorowym, Zeszyty Naukowe Politechniki Poznańskiej, 78, 51-64, https://doi.org/10.21008/j.0239-9415.2018.078.04.
Kambly K., Bradley T. H., 2015, Geographical and temporal differences in electric vehicle range due to cabin conditioning energy consumption, J. Power Sources, 275, 468-475, https://doi.org/10.1016/j.jpowsour.2014.10.142.
Kołoś A., 2006, Rozwój przestrzenny a współczesne funkcjonowanie miejskiego transportu szynowego w Polsce, IGiGP UJ, Kraków, 192+28.
Kołoś A., Taczanowski J., 2016, The feasibility of introducing light rail systems in medium-sized towns in Central Europe, Journal of Transport Geography, 54, 400-413, https://doi.org/10.1016/j.jtrangeo.2016.02.006.
Kołoś A., Taczanowski J., 2018, Możliwości i dylematy rozwoju miejskiego transportu szynowego w Polsce, Prace Komisji Geografii Komunikacji PTG, 21(3), 31-44, https://doi.org/10.4467/2543859XPKG.18.016.10141.
Kwiatkowski M., Kras B., 2021, Następna generacji baterii trakcyjnych o zwiększonej gęstości energii, Maszyny Elektryczne – Zeszyty Problemowe, 2 (126), 143-145.
Lajunen A., 2018, Lifecycle costs and charging requirements of electric buses with different charging methods, Journal of Cleaner Production, 172, 56-67, https://doi.org/10.1016/j.jclepro.2017.10.066.
Lazzeroni P., Caroleo B., Arnone M., Botta C., 2021, A Simplified Approach to Estimate EV Charging Demand in Urban Area: An Italian Case Study, Energies, 14, 6697, https://doi.org/10.3390/en14206697.
Li J.-Q., 2016, Battery-electric transit bus developments and operations: A review, International Journal of Sustainable Transportation, 10, 3, 157-169, https://doi.org/10.1080/15568318.2013.872737.
Liu K., Gao H., Liang Z., Zhao M., Li Ch., 2021, Optimal charging strategy for large-scale electric buses considering resource constraints, Transportation Research Part D: Transport and Environment, 99, 103009, https://doi.org/10.1016/j.trd.2021.103009.
Mahmoud M., Garnett R., Ferguson M., Kanaroglou P., 2016, Electric buses: A review of alternative powertrains, Renawable and Sustainable Energy Reviews, 62, 673-684, https://doi.org/10.1016/j.rser.2016.05.019.
May N., 2018, Local environmental impact assessment as decision support for the introduction of electromobility in urban public transport systems, Transportation Research Part D: Transport and Environment, 64, 192-203, https://doi.org/10.1016/j.trd.2017.07.010.
Motowidlak U., 2020, An Assessment of the Effectiveness of Actions to Implement the Principles of Circular Economy in the Electromobility Ecosystem, Ann. Univ. Mariae Curie-Skłodowska Sect. H Oeconomia, 54, 67-77, https://doi.org/10.17951/h.2020.54.3.67-77.
Mroskowiak M., Piotrowska A., Płachetka W., 2021, Analiza kosztów i korzyści związanych z wykorzystaniem przy świadczeniu usług komunikacji miejskiej autobusów zeroemisyjnych w mieście stołecznym Warszawa, Grupa CDE, Warszawa.
Nakamura N., Ahn S., Momma T., 2023, Future potential for lithium-sulfur batteries, Journal of Power Sources, 558, 232566, https://doi.org/10.1016/j.jpowsour.2022.232566.
Nan S., Tu R., Li T., Sun J., Chen H., 2022, From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus, Energy, 261, 125188, https://doi.org/10.1016/j.energy.2022.125188.
Pelletier S., Jabali O., Mendoza J. E., Laporte G., 2019, The electric bus fleet transition problem, Transportation Research Part C: Emerging Technologies, 109, 174-193, https://doi.org/10.1016/j.trc.2019.10.012.
Pietrzak K., Pietrzak O., 2019, Environmental Effects of Electromobility in a Sustainable Urban Public Transport, Sustainability, 12, 1052; www.doi:10.3390/su12031052.
Połom M., 2015, European Union Funds as a Growth Stimulant of Electromobility on the Example of Electric Public Transport in Poland, Barometr Regionalny, 13, 3, 89-96.
Połom M., 2018, Trends in the development of trolleybus transport in Poland at the end of the second decade of the 21st century, Prace Komisji Geografii Komunikacji PTG, 21(4), 44-59, https://doi.org/10.4467/2543859XPKG.18.023.10781.
Połom M., Wiśniewski, P., 2021, Implementing Electromobility in Public Transport in Poland in 1990-2020. A Review of Experiences and Evaluation of the Current Development Directions, Sustainability, 13, 4009, doi.org/10.3390/su1307400PSPA, 2021, Licznik Elektromobilności: liczba osobowych samochodów z napędem elektrycznym w Polsce przekroczyła 20 tys. sztuk, 23.03.2021, https://pspa.com.pl/2021/informacja/licznik-elektromobilnosci-liczba-osobowych-samochodow-z-napedem-elektrycznym-w-polsce-przekroczyla-20-tys-sztuk/ [dostęp: 12.12.2022].
Rogers E. M., 1962, Diffusion of Innovation (first ed.), Free Press of Glencoe, New York.
Rogge M., van der Hurk E., Larsen A., Sauer D. U., 2018, Electric bus fleet size and mix problem with optimization of charging infrastructure, Applied Energy, 211, 282-295, https://doi.org/10.1016/j.apenergy.2017.11.051.
Schmidt M., Żmuda-Trzebiatowski P., Kiciński M., Sawicki P., Lasak K., 2021, Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem, Energies, 14, 3214, https://doi.org/10.3390/en14113214.
Sobianowska-Turek A., Urbańska W., Janicka A., Zawiślak M., Matla J., 2021, The Necessity of Recycling of Waste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment, Recycling, 6, 35, https://doi.org/10.3390/recycling6020035.
Stavropoulou E., Iliopoulou Ch., 2022, Battery-Assisted Trolleybus Network Design: Model and Application, Journal of Transportation Engineering Part A: Systems, 148, 91, 04022063, https://doi.org/10.1061/jtepbs.0000713.
Sun J., Wang T., Gao Y., Pan Z., Hu R., Wang J., 2022, Will lithium-sulfur batteries be the next beyond-lithium ion batteries and even much better?, InfoMat, 4, e12359.
Taczanowski J., Kołoś A., Gwosdz K., Domański B., Guzik R., 2018, The development of low-emission public urban transport in Poland, Bulletin of Geography, Socio-economic Series, 41(41), 79-92, https://doi.org/10.2478/bog-2018-0027.
Uhl T., 2020, Czy wodór jest przyszłością transportu miejskiego? Część 1, Nowa Energia, 1, 71, 81-87.
Urbanowicz M., 2022, Warszawa: Kursowanie elektrobusów droższe niż tradycyjnych autobusów, Transport Publiczny, 5 lutego 2022, https://www.transport-publiczny.pl/wiadomosci/warszawa-kursowanie-elektrobusow-drozsze-niz-tradycyjnych-autobusow-72300.html [dostęp: 12.12.2022].
Ustawa z dnia 11 stycznia 2018 r. o elektromobilności i paliwach alternatywnych (Dz.U. 2022, poz.1083).
Ustawa z dnia 7 października 2022 r. o szczególnych rozwiązaniach służących ochronie odbiorców energii elektrycznej w 2023 roku w związku z sytuacją na rynku energii elektrycznej (Dz.U. 2022, poz. 2127).
Varga B. O., Sagoian A., Mariasiu F., 2019, Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges, Energies, 12, 946, https://doi.org/10.3390/en12050946.
Ye Y., Zhang J., Pilla S., Rao A. M., Xu B., 2023, Application of a new type of lithium‑sulfur battery and reinforcement learning in plug-in hybrid electric vehicle energy management, Journal of Energy Storage, 59, 106546, https://doi.org/10.1016/j.est.2022.106546.
Yigitcanlar T., 2022, Towards Smart and Sustainable Urban Electromobility: An Editorial Commentary, Sustainability, 14, 2264, https://doi.org/10.3390/su14042264.
Zhao Q., 2018, Electromobility research in Germany and China: structural differences, Scientometrics, 117, 473-493, https://doi.org/ 10.1007/s11192-018-2873-9.
ZDG TOR, 2018, Polska na drodze do elektromobilności.
Żabicki M., 2022, Rozwój elektromobilności w transporcie miejskim, Biuletyn Komunikacji Miejskiej, 163, 6-11.
Informacje: Prace Komisji Geografii Komunikacji PTG, 2023, 26 (1), s. 22 - 39
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Evolution of second-generation electromobility in public transport in Polish cities
Evolution of second-generation electromobility in public transport in Polish cities
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, 30-387 Kraków, ul. Gronostajowa 7
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, 30-387 Kraków, ul. Gronostajowa 7
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, 30-387 Kraków, ul. Gronostajowa 7
Uniwersytet Jagielloński w Krakowie
Polska
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, 30-387 Kraków, ul. Gronostajowa 7
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, 30-387 Kraków, ul. Gronostajowa 7
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, 30-387 Kraków, ul. Gronostajowa 7
Publikacja: 31.03.2023
Otrzymano: 27.12.2022
Zaakceptowano: 21.02.2023
Status artykułu: Otwarte
Licencja: CC BY
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 726
Liczba pobrań: 633