COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTECOVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data
Data publikacji: 15.06.2020
Prace Komisji Geografii Komunikacji PTG, 2020, 23 (2) Numer specjalny, s. 46 - 55
https://doi.org/10.4467/2543859XPKG.20.007.12105Autorzy
COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data
As no effective treatment or vaccine have yet been developed, the only way to prevent the spread of SARS-Cov-2 is to introduce social distancing measures. Scientific discussion regarding their actual effectiveness and socio-economic consequences has only just begun. Both declining mobility and changes in mobility patterns are obvious effects of social distancing. The main objective of this article is to present spatial diversity of changes in regional and local mobility in Poland with the use of data gathered and provided by Google LCC. As for the regional dimension, the mobility has declined steadily in most of the analysed areas. The regional changes were more visible only in the case of the following categories of areas: grocery & pharmacy and parks. The initial correlation analysis has shown that distribution of those changes more or less reflects spatial voting patterns. Both historical and cultural factors may explain such results, including ingrained habits, collective attitudes towards politics and group values. In the local context, illustrated by the analysis of changes in travel time from housing areas in Gdańsk, Gdynia and Sopot to the business and science centre in Gdańsk-Oliwa, a noticeable yet spatially diversified decrease in drive time (by private car) has been observed. The most significant reduction in travel time was recorded in peripheral areas accessible by high-speed roads which are normally jammed during peak hours. The mobility constraints have led to highly reduced traffic congestion, and consequently, shortened the travel time.
Beck U., Scott L., Brian W., 1992, Risk society: Towards a new modernity, Sage Publications, Thousand Oaks.
Boutin X., Clemens G., 2017, Defining’Big Data’in Antitrust, Comptition Policy International: Antitrust Chronicle 2017, 1(2), 22–28. (DOI 10.2139/ssrn.2938397)
Buchanan M., 2002, Nexus: Small Worlds and the Groundbraking Science of Network, W. W. Norton, London.
Castells M., 2004, The network socjety. A cross-cultural perspective, Edward Elgar, Cheltenham Glos.
Cheng V.C. C., Lau S. K. P., Woo P. C. Y., Yuen K. Y., 2007, Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection, Clinical Microbiology Reviews, 20(4), 660–694.
Chinazzi M. et al., 2020, The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, Mar 6, 1–12. (DOI 10.1126/science.aba9757)
COVID-19 Community Mobility Report, 2020, Google LLC, https://www.google.com/covid19/mobility/ [29.03.2020]
Domański B., 2004, Krytyka pojęcia rozwoju a studia regionalne, Studia Regionalne i Lokalne, 2(16), 7–23.
Grabowski W., 2018, Determinanty przestrzennego zróżnicowania wyników głosowania w wyborach parlamentarnych z 2015 roku, Studia Socjologiczne, 1(228), 35–64. (DOI 10.24425/119086)
Ivanov D., 2020, Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case, Transportation Research Part E: Logistics and Transportation Review, 136, 101922. (DOI 10.1016/j.tre.2020.101922)
Kreamer M. et al., 2020, The effect of human mobility and control measures on the COVID-19 epidemic in China, Science, Mar 25, 1–7. (DOI 10.1126/science.abb4218)
Lau H. et al., 2020, The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China, Journal of Travel Medicine, Mar 17, 1–14. (DOI 10.1093/jtm/taaa037)
Lorens P., 2015, Scenariusze rozwoju przestrzennego obszaru metropolitalnego Trójmiasta, Rozwój Regionalny i Polityka Regionalna, 29, 71-92.
Mapa zarażeń koronawirusem (SARS-CoV-2), 2020, https://www.gov.pl/web/koronawirus/wykaz-zarazen-koronawirusem-sars-cov-2 [29.03.2020]
McKibbin W., Fernando R., 2020, The global macroeconomic impacts of COVID-19: Seven scenarios, CAMA Working Paper, 19, 1-43.
Mobile Operating System Market Share in Poland – March 2020, 2020, StatCounter, https://gs.statcounter.com/os-market-share/mobile/poland [18.04.2020]
Polycentric Territorial Structures and Territorial Cooperation, 2016, ESPON EGTC, Luxembourg.
Rozporządzenie Ministra Zdrowia z dnia 24 marca 2020 r. zmieniające rozporządzenie w sprawie ogłoszenia na obszarze Rzeczypospolitej Polskiej stanu epidemii, 2020, Dz. U., Mar 24, 522.
Sowa J., 2012, Fantomowe ciało króla: Peryferyjne zmagania z nowoczesną formą, seria: Studia Historyczne, 55(3-4), Towarzystwo Autorów i Wydawców Prac Naukowych UNIVERSITAS, Kraków.
Taleb N. N., 2007, The Black Swan: The Impact of the Highly Improbable, Penguin Random House, London.
Tian H. et al., 2020, An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China, Science, Mar 31, 1–8. (DOI 10.1126/science.abb6105)
Urry J., 2016, Does mobility have a future?, [in:] M. Grieco & J. Urry (eds.), Mobilities: new perspective on transport and society, Routledge Taylor & Francis Group, London and New York, 3–20.
Wang F., Xu Y., 2011, Estimating O–D travel time matrix by Google Maps API: implementation, advantages, and implications, Annals of GIS, 17(4), 199–209.
Wilder-Smith A., Chiew C. J., Lee V. J., 2020, Can we contain the COVID-19 outbreak with the same measures as for SARS?, The Lancet Infectious Diseases, Mar 5, 1–6. (DOI 10.1016/S1473-3099(20)30129-8)
Wiśniewski Sz., 2016, Teoretyczna i rzeczywista wewnętrzna dostępność transportowa Łodzi, Prace i Studia Geograficzne, 61(3), 95–108.
Informacje: Prace Komisji Geografii Komunikacji PTG, 2020, 23 (2) Numer specjalny, s. 46 - 55
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data
COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data
Zakład Rozwoju Regionalnego, Instytut Geografii, Wydział Oceanografii i Geografii, Uniwersytet Gdański, Bażyńskiego 4, 80-309 Gdańsk
Katedra Geografii Fizycznej i Kształtowania Środowiska, Wydział Oceanografii i Geografii, Uniwersytet Gdański, Bażyńskiego 4, 80-309 Gdańsk
Zakład Rozwoju Regionalnego, Instytut Geografii, Wydział Oceanografii i Geografii, Uniwersytet Gdański, Bażyńskiego 4, 80-309 Gdańsk
Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej, Uniwersytet Gdański, J. Bażyńskiego 4, 80-309 Gdańsk
Publikacja: 15.06.2020
Otrzymano: 26.04.2020
Zaakceptowano: 16.05.2020
Status artykułu: Otwarte
Licencja: CC BY
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1477
Liczba pobrań: 1064