DNA testing for investigative purposes: search for the perpetrator’s DNA profile and kinship analysis = Badania DNA dla celów dochodzeniowo-śledczych – poszukiwania profilu DNA sprawcy i analiza pokrewieństwa
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEData publikacji: 28.06.2024
Problems of Forensic Sciences (Z Zagadnień Nauk Sądowych), 2024, 137, s. 5 - 16
https://doi.org/10.4467/12307483PFS.24.001.19857Autorzy
Almost 40 years have passed since Alec Jeffreys’ seminal publications on the use of repetitive DNA marker analysis for human identification. The analysis of STR markers using multiplex PCR methods that followed this discovery has become a standard test for human identification. These methods also have investigative value. They are useful in the search for an unknown perpetrator through mass DNA testing as well as through forensic DNA databases. Another breakthrough is the analysis of long-range relationships. The ability to establish long-range relationships has enabled investigators to find the perpetrator of a crime, even in the absence of investigative hypotheses, by analysing the genealogical links recorded in our genomes. Modern DNA analysis not only provides strong evidence to be presented in court, but can also provide useful investigative leads when the identity of the perpetrator is unknown to the authorities.
Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature. 1985 Mar 7-13;314(6006):67-73. doi: 10.1038/314067a0.
Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature. 1985;318(6046):577-9. doi: 10.1038/318577a0.
Jeffreys AJ, Brookfield JFY, Semeonoff R. Positive identification of an immigration test-case using human DNA fingerprints. Nature. 1985;317:818-819.
Jobling MA. Curiosity in the genes: the DNA fingerprinting story. Investig Genet. 2013;4(1):20. doi: 10.1186/2041-2223-4-20.
Saiki RK, Scharf S, Faloona F, Mullis K B, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350-4. doi: 10.1126/science.2999980.
Edwards A, Civitello A, Hammond HA, Caskey CT. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991;49(4):746-56.
Koehler JJ, Mnookin JL, Saks MJ. The scientific reinvention of forensic science. Proc Natl Acad Sci USA. 2023;120(41):e2301840120. doi: 10.1073/pnas.2301840120.
Sullivan K M, Mannucci A, K impton CP, Gill P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques. 1993;15(4):636-8, 640-1.
Dettlaff-Kakol A, Pawlowski R. First Polish DNA ‘manhunt’ – an application of Y-chromosome STRs. Int J Legal Med. 2002;116(5):289-91. doi: 10.1007/s00414-002- 0320-0.
Amankwaa AO. Forensic DNA retention: public perspective studies in the United K ingdom and around the world. Sci Justice. 2018;58(6):455-464. doi: 10.1016/j.scijus.2018.05.002.
Struyf P, De Moor S, Vandeviver C, Renard B, Vander Beken T. The effectiveness of DNA databases in relation to their purpose and content: a systematic review. Forensic Sci Int. 2019;301:371-381. doi: 10.1016/j.forsciint.2019.05.052.
Machado H, Granja R, Amorim A. Ethical challenges of merging criminal identification and civil identification within the Prüm system. Forensic Sci Int Genet. 2022;57:102660. doi: 10.1016/j.fsigen.2022.102660.
Santos F, Machado H, Silva S. Forensic DNA databases in European countries: is size linked to performance? Life Sci Soc Policy. 2013;9:12. doi: 10.1186/2195-7819-9-12.
Branicki W, K upiec T. Ekspertyza genetyczna. In: Kała M, Wilk D, Wójcikiewicz J, Zuba D, editors. Ekspertyza sądowa. Zagadnienia wybrane. Warszawa: Wolters K luwer; 2023. p. 154.
Ge J, Budowle B. Forensic investigation approaches of searching relatives in DNA databases. J Forensic Sci. 2021;66(2):430-443. doi: 10.1111/1556-4029.14615.
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860-921. doi: 10.1038/35057062.
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304-51. doi: 10.1126/science.1058040.
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931-45. doi: 10.1038/nature03001. linked to performance? Life Sci Soc Policy. 2013;9:12. doi: 10.1186/2195-7819-9-12.
Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59. doi: 10.1002/cpmb.59.
Krumm N, Hoffman N. Practical estimation of cloud storage costs for clinical genomic data. Pract Lab Med. 2020;21:e00168. doi: 10.1016/j.plabm.2020.e00168.
International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299-320. doi: 10.1038/nature04226.
Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061-73. doi: 10.1038/nature09534.
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115.
Vidaki A, K ayser M. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol. 2017;18(1):238. doi: 10.1186/s13059-017-1373-1.
Erlich Y, Shor T, Pe’er I, Carmi S. Identity inference of genomic data using long-range familial searches. Science. 2018;362(6415):690-694. doi: 10.1126/science.aau4832.
Kling D, Phillips C, K ennett D, Tillmar A. Investigative genetic genealogy: current methods, knowledge and practice. Forensic Sci Int Genet. 2021;52:102474. doi: 10.1016/j.fsigen.2021.102474.
Li H, Glusman G, Hu H, Shankaracharya, Caballero J, Hubley R, et al. Relationship estimation from whole-genome sequence data. PLoS Genet. 2014 Jan 30;10(1):e1004144. doi: 10.1371/journal.pgen.1004144.
Phillips C. The Golden State K iller investigation and the nascent field of forensic genealogy. Forensic Sci Int Genet. 2018;36:186-188. doi: 10.1016/j.fsigen.2018.07.010.
Rogalla-Ładniak U. The overview of forensic genetic genealogy. Arch Med Sadowej K ryminol. 2022;72(4):211-222. doi:10.4467/16891716AMSIK.22.023.17623.
Peck M, K oeppel A, Gorden E, Bouchet J, Heaton M, Russell D, et al. Internal validation of the ForenSeq Kintelligence kit for application to forensic genetic genealogy. Forensic Genomics. 2023;2:103-114. doi.org/10.1089/forensic.2022.0014.
Tillmar A, Fagerholm SA, Staaf J, Sjölund P, Ansell R. Getting the conclusive lead with investigative genetic genealogy – a successful case study of a 16 year old double murder in Sweden. Forensic Sci Int Genet. 2021;53:102525. doi: 10.1016/j.fsigen.2021.102525.
Zabel J. The killer inside us: law, ethics, and the forensic use of family genetics. Berkeley J Crim L. 2019; 47-100. http://dx.doi.org/10.2139/ssrn.3368705.
Informacje: Problems of Forensic Sciences (Z Zagadnień Nauk Sądowych), 2024, 137, s. 5 - 16
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński, Kraków
Instytut Ekspertyz Sądowych im. Prof. dra Jana Sehna w Krakowie
Publikacja: 28.06.2024
Otrzymano: 30.01.2024
Zaakceptowano: 04.03.2024
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
Angielski, Polski