Poprawa jakości DNA w kryminalistyce. Kompleksowy przegląd zintegrowanych norm ISO – od miejsca przestępstwa do sali sądowej
Wybierz format
RIS BIB ENDNOTEData publikacji: 07.04.2025
Problems of Forensic Sciences (Z Zagadnień Nauk Sądowych), 2024, 140, s. 281-292
https://doi.org/10.4467/12307483PFS.24.017.21383Autorzy
Enhancing forensic DNA quality: a comprehensive review of the integrated ISO centric standards from the crime scene to the courtroom
Forensic DNA evidence is essential in criminal investigations; however, its interpretation is often complicated by contamination and the presence of multiple DNA profiles in a single sample. Although many laboratories follow stringent quality control and ISO 17025 standards, the pre-analytical stage, including crime scene and medical sample collection phases, lacks rigorous quality management protocols, increasing the integrity of DNA sampling and evidence handling. The UK’s Forensic Science Regulator (FSR) enforces a framework based on various ISO standards to enhance DNA evidence quality throughout its lifecycle and pre-analytical, analytical, and post-analytical phases. Key standards include ISO 17020 for crime-scene units, ISO 15189 for medical examination centers, ISO 17025 for forensic DNA labs, and ISO 18385 for forensic-grade consumables. This comprehensive approach aimed to mitigate contamination risks and ensure the reliability of forensic DNA evidence from collection to court presentation, thereby strengthening the criminal justice system and maintaining public confidence in forensic science.
1. Panneerchelvam S, Mohd Nor N. DNA profiling in human identification: from past to present. Malays J Med Sci. 2023;30:5-21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793127/
2. Bieber FR, Budowle B, Coble MD, Buckleton JS, Butler JM. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion. BMC Genet. 2016;17(1). https://doi.org/10.1186/s12863-016-0429-7
3. Neuhuber F, Kreindl G, Kastinger T, Dunkelmann B, Zahrer W, Cemper-Kiesslich J, et al. Police officer’s DNA on crime scene samples – indirect transfer as a source of contamination and its database-assisted detection in Austria. Forensic Sci Int Genet Suppl Ser. 2017;6:e608-e609. https://doi.org/10.1016/j.fsigss.2017.11.001
4. Fonneløp AE, Johannessen H, Egeland T, Gill P. Contamination during criminal investigation: detecting police contamination and secondary DNA transfer from evidence bags. Forensic Sci Int Genet. 2016;23:121-129. https://doi.org/10.1016/j.fsigen.2016.04.003
5. Szkuta B, Harvey ML, Ballantyne KN, Van Oorschot RAH. DNA transfer by examination tools – a risk for forensic casework? Forensic Sci Int Genet. 2015;16:246-254. https://doi.org/10.1016/j.fsigen.2015.02.004
6. Pickrahn I, Kreindl G, Müller E, Dunkelmann B, Zahrer W, Cemper-Kiesslich J, et al. Contamination incidents in the pre-analytical phase of forensic DNA analysis in Austria – statistics of 17 years. Forensic Sci Int Genet. 2017;31:12-18. https://doi.org/10.1016/j.fsigen.2017.07.012
7. Smith PA, Jetten K, Lovell C. Set up to ‘fail’? Implementing contamination minimisation procedures and environmental monitoring in a Sexual Assault Referral Centre. J Forensic Leg Med. 2022;90:102377. https://doi.org/10.1016/j.jflm.2022.102377
8. Basset P, Castella V. Positive impact of DNA contamination minimization procedures taken within the laboratory. Forensic Sci Int Genet. 2018;38:232-235. https://doi.org/10.1016/j.fsigen.2018.11.013
9. Bini C, Pelotti S, Fais P, Pelletti G, Giorgetti A, Giovannini E. Human DNA contamination of postmortem examination facilities: impact of COVID-19 cleaning procedure. J Forensic Sci. 2022;67(5):1867-1875. https://doi.org/10.1111/1556-4029.15096
10. Ansell R, Widén C. Swedish legislation regarding forensic DNA elimination databases. Forensic Sci Policy Manag. 2016;7(1-2):30-36. https://doi.org/10.1080/19409044.2015.1099061
11. Chang M. The U.S. and Italian criminal justice system: through the lens of the Amanda Knox trial. SSRN Electronic Journal. 2019. https://doi.org/10.2139/ssrn.3397975
12. Smith PA. When DNA implicates the innocent. Scientific American. 2016;314(6):11-12. https://doi.org/10.1038/scientificamerican0616-11
13. Al-Snan NR, Alraimi NM. Comparison between various DNA sterilization procedures applied in forensic analysis. Egypt J Forensic Sci. 2022;12(1). https://doi.org/10.1186/s41935-022-00265-7
14. Kloosterman A, Sjerps M, Quak A. Error rates in forensic DNA analysis: definition, numbers, impact and communication. Forensic Sci Int Genet. 2014;12:77-85. https://doi.org/10.1016/j.fsigen.2014.04.014
15. Henry J, Mcgowan P, Brown C. A survey of environmental DNA in South Australia Police facilities. Forensic Sci Int Genet Suppl Ser. 2015;5:e465-e466. https://doi.org/10.1016/j.fsigss.2015.09.184
16. Bonsu DNO, Simon C, Higgins D, Henry JM, Austin JJ. Metal-DNA interactions: exploring the impact of metal ions on key stages of forensic DNA analysis. Electrophoresis. 2023;45(9-10):779-793. https://doi.org/10.1002/elps.202300070
17. Bieber FR, Budowle B, Coble MD, Buckleton JS, Butler JM. Evaluation of forensic DNA mixture evidence: protocol for evaluation, interpretation, and statistical calculations using the combined probability of inclusion. BMC Genet. 2016;17(1). https://doi.org/10.1186/s12863-016-0429-7
18. Barrio P, Inglés V, González R, Sala A, Posada Y, Luque G M, et al. GHEP-ISFG collaborative exercise on mixture profiles (GHEP-MIX06). Reporting conclusions: results and evaluation. Forensic Sci Int Genet. 2018;35:156-163. https://doi.org/10.1016/j.fsigen.2018.05.005
19. Dror IE, Hampikian G. Subjectivity and bias in forensic DNA mixture interpretation. Sci Justice. 2011;51(4):204-208. https://doi.org/10.1016/j.scijus.2011.08.004
20. Butler JM. History of DNA Advisory Boards. In: Houck MM, editor. Encyclopedia of forensic sciences. Academic Press; 2013. p. 157-162. https://doi.org/10.1016/b978-0-12-823677-2.00309-3
21. Decorte R. Accreditation in forensic DNA analysis. In: Houck MM, editor. Encyclopedia of forensic sciences. Academic Press; 2013. p. 227-232. https://doi.org/10.1016/b978-0-12-382165-2.00041-6
22. G ettings KB, Hares DR, Irwin J, Hoogenboom J, Ballard D, Børsting C, et al. Recommendations of the DNA Commission of the International Society for Forensic Genetics (ISFG) on short tandem repeat sequence nomenclature. Forensic Sci Int Genet. 2023;68:102946. https://doi.org/10.1016/j.fsigen.2023.102946
23. Coble MD, Buckleton J, Butler JM, Egeland T, Fimmers R, Gill P, et al. DNA Commission of the International Society for Forensic Genetics: recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications. Forensic Sci Int Genet. 2016;25:191-197. https://doi.org/10.1016/j.fsigen.2016.09.002
24. Wilson L. Combined DNA Index System: CODIS. In: Houck MM, editor. Encyclopedia of forensic sciences. Academic Press; 2013. p. 596-604. https://doi.org/10.1016/b978-0-12-823677-2.00209-9
25. Nsiah Amoako E. The role and function of the Forensic Science Regulator in the UK. In: Payne-James J, Byard RW, editors. Encyclopedia of legal medicine. Elsevier; 2025. p. 648-654. https://doi.org/10.1016/b978-0-443-21441-7.00234-x
26. Nsiah Amoako E, Mccartney C. The UK forensic science regulator: fit for purpose? WIREs Forensic Sci. 2021;3(6). https://doi.org/10.1002/wfs2.1415
27. Nsiah Amoako E, Mccartney C. Swapping carrots for sticks: forensic science provider views of the Forensic Regulator Act 2021. Sci Justice. 2022;62(5):506-514. https://doi.org/10.1016/j.scijus.2022.07.010
28. Mallinder B, Pope S, Thomson J, Beck L-A, Mcdonald A, Ramsbottom D, et al. Interpretation and reporting of mixed DNA profiles by seven forensic laboratories in the UK and Ireland. Forensic Sci Int Genet. 2022;58:102674. https://doi.org/10.1016/j.fsigen.2022.102674
29. Forensic Science Regulator. Code of Practice. London: Home Office; 2023 [cited 2024 Nov 5]. Available from: https://assets.publishing.service.gov.uk/media/64da431cc8dee4000d7f1c1e/FINAL_2023.1.18_Code_of_Practice.pdf
30. Forensic Science Regulator (FSR). DNA contamination controls: laboratory. Birmingham: FSR; 2023 [cited 2024 Nov 5]. Available from: https://www.gov.uk/government/publications/dna-contamination-controls-laboratory/dna-contamination-controls-laboratory-accessible
31. Rover T, Borges R, Silva DA, Carvalho EF. Profile mapping DNA laboratories overlooking the forensic field and use of quality systems. Forensic Sci Int Genet Suppl Ser. 2015;5:e409-e411. https://doi.org/10.1016/j.fsigss.2015.09.162
32. International Laboratory Accreditation Cooperation (ILAC). ILAC G19:06/2022 Modules in a Forensic Science Process. Sydney: ILAC; 2022 [cited 2024 Nov 5]. Available from: https://ilac.org/publications-and-resources/ilac-guidance-series/
33. Forensic Science Regulator (FSR). Forensic science providers: validation. Birmingham: FSR; 2023 [cited 2024 Nov 5]. Available from: https://www.gov.uk/government/publications/forensic-science-providers-validation/forensic-science-providers-validation-accessible
34. Forensic Science Regulator (FSR). DNA mixture interpretation. Birmingham: FSR; 2023 [cited 2024 Nov 5]. Available from: https://www.gov.uk/government/publications/dna-mixture-interpretation-fsr-g-222
35. Forensic Science Regulator (FSR). Proficiency testing guidance: DNA mixture analysis and interpretation. London: GO V.UK; 2023 [cited 2024 Nov 5]. Available from: https://www.gov.uk/government/publications/proficiency-testing-guidance-dna-mixture-analysis-and-interpretation
36. Forensic Science Regulator. Contamination controls: scene of crime. London: Home Office; 2023 [cited 2024 Nov 5]. Available from: https://www.gov.uk/government/publications/crime-scene-dna-anti-contamination-guidance/contamination-controls-scene-of-crime-accessible
37. Jones NS, Forry EP. Demystifying accreditation: a framework for accreditation of forensic units. National Institute of Standards and Technology; 2023. https://doi.org/10.6028/nist.gcr.23-043
38. Neuteboom W, Ross A, Bugeja L, Willis S, Roux C, Lothridge K. Quality management in forensic science: a closer inspection. Forensic Sci Int. 2023;358:111779. https://doi.org/10.1016/j.forsciint.2023.111779
39. Forensic Science Regulator. DNA contamination controls: forensic medical examinations. London: Home Office; 2023 [cited 2024 Nov 5]. Available from: https://www.gov.uk/government/publications/dna-contamination-controls-forensic-medical-examinations/dna-contamination-controls-forensic-medical-examinations-accessible
40. Plebani M, Sciacovelli L. ISO 15189 Accreditation: navigation between quality management and patient safety. J Med Biochem. 2017;36(3):225-230. https://doi.org/10.1515/jomb-2017-0038
41. British Standards Institution (BSI). PAS 377:2023 Consumables used in the collection, preservation and processing of material for forensic analysis. London: BSI; 2023 [cited 2024 Nov 5]. Available from: https://www.bsigroup.com/siteassets/pdf/en/insights-and-media/insights/brochures/pas_377.pdf
Informacje: Problems of Forensic Sciences (Z Zagadnień Nauk Sądowych), 2024, 140, s. 281-292
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Department of Bioscience and Biotechnology,
Banasthali Vidyapith
Indie
Department of Forensic Science,
Amity University
Indie
Department of Bioscience and Biotechnology,
Banasthali Vidyapith
Indie
Department of Forensic Science,
Amity University
Indie
Publikacja: 07.04.2025
Otrzymano: 07.10.2024
Zaakceptowano: 18.12.2024
Status artykułu: Otwarte
Licencja: CC BY-NC-ND
Udział procentowy autorów:
Informacje o konflikcie interesów:
Korekty artykułu:
-Języki publikacji:
Angielski, PolskiLiczba wyświetleń: 274
Liczba pobrań: 142
Sugerowane cytowania: Vancouver