[1] López A.F., Deladino L., Alba S.N., Miriam N.M., Encapsulación de compuestos bioactivos con alginatos para la industria de alimentos, limentech, Ciencia y Tecnología Alimentaria, 10(1), 2011.
[2] Whelehan M., Marison I.W., Microencapsulation using vibrating technology, Journal of microencapsulation, 28(8), 2011, 669–688.
[3] Aftabrouchad C., Doelker E.S.T.P., Méthodes de préparation des microparticules biodégradables chargées en principes actifs hydrosolubles, STP pharma sciences, 2(5), 1992, 365–380.
[4] Thomasin C., Johansen P., Alder R., Bemsel R., Hottinger G., Altorfer H., Wright A.D., A Contribution to Overcoming the Problem of Residual Solvents in Biodegradable Microspheres, Prepared by. Eur. J. Pharm. Biopharm, 42, 1996, 1.
[5] Johansen P., Merkle H. P., Gander B. Technological considerations related to the up-scaling of protein microencapsulation by spray-drying, European Journal of Pharmaceutics and Biopharmaceutics, 50(3), 2000, 413–417.
[6] Rayleigh L., Philosophical Magazine, Series 5, 1882, 184–186.
[7] Yeo Y., Baek N., & Park K., Microencapsulation methods for delivery of protein drugs, Biotechnology and Bioprocess Engineering, 6(4), 2001, 213–230.
[8] Vemmer M., Patel A.V., Review of encapsulation methods suitable for microbial biological control agents, Biological Control, 67(3), 2013, 380–389.
[9] Whelehan M., Marison I.W., Microencapsulation using vibrating technology, Journal of microencapsulation, 28(8), 2011, 669–688.
[10] BUCHI Labortechnik AG. Encapsulators B-390/B-395 Pro, Technical data sheet, http:// www.buchi.com/en/content/spray-drying-encapsulation-solutions (access: July 2016).
[11] Serp D., Cantana E., Heinzen C., Von Stockar U., Marison I.W., Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization, Biotechnology and bioengineering, 70(1), 2000, 41-53.
[12] Heinzen C., Berger A., Marison I., Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules, In Fundamentals of cell immobilisation biotechnology Springer Netherland 2004, 257–275.
[13] Marison I., Peters A., Heinzen C., Liquid Core Caspules for Applications in Biotechnology. In Fundamentals of cell immobilisation biotechnology 2004, Springer Netherlands 2004, 185–204.
[14] Brandenberger H., Nüssli D., Piech V., Widmer F., Monodisperse particle production: A method to prevent drop coalescence using electrostatic forces, Journal of electrostatics, 45(3), 1999, 227–238.
[15] Kikuchi A., Kawabuchi M., Sugihara M., Sakurai Y., Okano T., Pulsed dextran release from calcium-alginate gel beads, Journal of Controlled Release, 47(1), 1997, 21–29.
[16] Morris E.R., Rees D.A., Thom D., Boyd J., Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation, Carbohydrate research, 66(1), 1978, 145–154.
[17] Lee B.J., Min G.H., Oral controlled release of melatonin using polymer-reinforced and coated alginate beads, International journal of pharmaceutics, 144(1), 1996, 37–46.
[18] Kamath K.R., Park K., Biodegradable hydrogels in drug delivery, Advanced Drug Delivery Reviews, 11(1), 1993, 59–84.
[19] González-Rodrıguez M.L., Holgado M.A., Sanchez-Lafuente C., Rabasco A.M., Fini A., Alginate/chitosan particulate systems for sodium diclofenac release. International Journal of Pharmaceutics, 232(1), 2002, 225–234.
[20] Wang L., Shelton R.M., Cooper P.R., Lawson M., Triffitt J.T., Barralet J.E., Evaluation of sodium alginate for bone marrow cell tissue engineering, Biomaterials, 24(20), 2003, 3475–3481.
[21] Yoo S.H., Song Y.B., Chang P.S., Lee H.G., Microencapsulation of α-tocopherol using sodium alginate and its controlled release properties, International journal of biological macromolecules, 38(1), 2006, 25–30.
[22] Lertsutthiwong P., Noomun K., Jongaroonngamsang N., Rojsitthisak P., Nimmannit U., Preparation of alginate nanocapsules containing turmeric oil, Carbohydrate Polymers, 74(2), 2008, 209–214.
[23] Zhu G.Y., Xiao Z.B., Zhou R.J., Yi F.P., Fragrance and flavor microencapsulation technology, In Advanced Materials Research, Vol. 535, 2012, 440–445. Trans Tech Publications.
[24] Craigie J.S., Cell walls. In biology of the red algae, K.M. Cole and R.G., Cambrige University Press, 1990, 221–257.
[25] Murano E., Use of natural polysaccharides in the microencapsulation techniques, Journal of Applied Ichthyology, 14(3–4), 1998, 245–249.
[26] Rochas C., Rinaudo M., Mechanism of gel formation in κ‐carrageenan, Biopolymers, 23(4), 1984, 735–745.
[27] Dima C., Cotârlet M., Alexe P., Dima S., Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method, Innovative Food Science & Emerging Technologies, 22, 2014, 203–211.
[28] Anal A.K., Singh H., Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery, Trends in Food Science & Technology, 18(5), 2007, 240–251.
[29] Shi L.E., Li Z.H., Zhang Z.L., Zhang T.T., Yu W.M., Zhou M.L., Tang Z.X., Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure, LWT-Food Science and Technology, 54.1, 2013, 147–151.
[30] Peniche C., Argüelles‐Monal W., Peniche H., Acosta N., Chitosan: an attractive biocompatible polymer for microencapsulation, Macromolecular Bioscience, 3(10), 2003, 511–520.
[31] Muzzarelli R.A.A., Muzzarelli C., Chitosan chemistry: relevance to the biomedical sciences, In Polysaccharides I, 2005, 151–209, Springer Berlin Heidelberg.
[32] Sugano M., Fujikawa T., Hiratsuji Y., Hasegawa Y., Hypocholesterolemic effects of chitosan in cholesterol-fed rats, Nutr. Rep. Int, 18, 1978, 531–537.
[33] Tokura S., Ueno K., Miyazaki S., Nishi N., Molecular weight dependent antimicrobial activity by chitosan, In New Macromolecular Architecture and Functions, 1996, 199–207, Springer Berlin Heidelberg.
[34] Hirano S., Tokura S., Proceedings of the Second International Conference on Chitin/ Chitosan. Japanese Soc. Chitin, Tottori Japan 1982.
[35] Peniche H., Osorio A., Acosta N., De La Campa A., Peniche C., Preparation and characterization of superparamagnetic chitosan microspheres: Application as a support for the immobilization of tyrosinase, Journal of applied polymer science, 98(2), 2005, 651–657.
[36] Shibasaki K., Matsukubo T., Shugihara N., Tashiro E., Tanabe Y., Takaesu Y., Kokku Eisei Gakai Zasshi, 1988, 38.
[37] Şenel S., Kremer M.J., Kaş S., Wertz P.W., Hıncal A.A., Squier C.A., Enhancing effect of chitosan on peptide drug delivery across buccal mucosa, Biomaterials, 21(20), 2000, 2067–2071.
[38] Pajunen E., Grönqvist A., Ranta B., Immobilized yeast reactor application in continuous secondary fermentation in industrial scale operation, In Proceedings of the European Brewing Convention Congress, Lisbon 1991, 361–368.
[39] Lommi H., Immobilized yeast for maturation and alcohol-free beer, Brew. Dist. Int, 5, 1990, 22–23.
[40] Pilkington P.H., Margaritis A., Mensour N.A., Russell I., Fundamentals of immobilised yeast cells for continuous beer fermentation: a review, Journal of the Institute of Brewing, 104(1), 1998, 19–31.
[41] Hayes S.A., Power J., Ryder D.S., Physiology of immobilised cells and the application to brewing, Brew. Dig. 66 (11), 1991, 28–33.
[42] Nedovic V.A., Obradovic B., Leskosek-Cukalovic I., Vunjak-Novakovic G., Immobilized yeast bioreactor systems for brewing—recent achievements, In Engineering and manufacturing for biotechnology, 2001, 277–292, Springer Netherlands.
[43] Nedović V.A., Obradović B., Leskošek-Čukalović I., Trifunović O., Pešić R., Bugarski B., Electrostatic generation of alginate microbeads loaded with brewing yeast, Process Biochemistry, 37(1), 2001, 17–22.
[44] Wyss A., Von Stockar U., Marison I.W., Production and characterization of liquid‐core capsules made from cross‐linked acrylamide copolymers for biotechnological applications, Biotechnology and bioengineering, 86(5), 2004, 563–572.
[45] Stark D., Münch T., Sonnleitner B., Marison I.W., Stockar U.V., Extractive Bioconversion of 2‐Phenylethanol from l‐Phenylalanine by Saccharomycescerevisiae. Biotechnology Progress, 18(3), 2002, 514–523.
[46] Ouwehand A.C., Salminen S.J., The health effects of cultured milk products with viable and non-viable bacteria, International Dairy Journal, 8(9), 1998, 749–758.
[47] Chandramouli V., Kailasapathy K., Peiris P., Jones M., An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions, Journal of microbiological methods, 56(1), 2004, 27–35.
[48] McSweeney P.L., Biochemistry of cheese ripening. International Journal of Dairy Technology, 57(2‐3), 2004, 127–144.
[49] Kailasapathy K., Lam S.H., Application of encapsulated enzymes to accelerate cheese ripening. International Dairy Journal, 15(6), 2005, 929–939.
[50] Anjani K., Kailasapathy K., Phillips M., Microencapsulation of enzymes for potential application in acceleration of cheese ripening, International Dairy Journal, 17(1), 2007, 79–86.
[51] Wang W., Waterhouse G.I., Sun-Waterhouse D., Co-extrusion encapsulation of canola oil with alginate: effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability, Food research international, 54(1), 2013, 837–851.
[52] Sun-Waterhouse D., Penin-Peyta L., Wadhwa S.S., Waterhouse G.I., Storage stability of phenolic-fortified avocado oil encapsulated using different polymer formulations and co-extrusion technology, Food and Bioprocess Technology, 5(8), 2012, 3090–3102.
[53] Choe E., Effects and mechanisms of minor compounds in oil on lipid oxidation, Food lipids: chemistry, nutrition, and biotechnology, 2008, 449–474.
[54] Neethirajan S., Jayas D.S., Nanotechnology for the food and bioprocessing industries. Food and bioprocess technology, 4(1), 2011, 39–47.