A Lattice of Implicative Extensions of Regular Kleene's Logics
Choose format
RIS BIB ENDNOTEA Lattice of Implicative Extensions of Regular Kleene's Logics
Publication date: 28.08.2012
Reports on Mathematical Logic, 2012, Number 47, pp. 173-182
https://doi.org/10.4467/20842589RM.12.008.0689Authors
A Lattice of Implicative Extensions of Regular Kleene's Logics
The paper deals with functional properties of three-valued logics. We consider the family of regular three-valued Kleene’s logics (strong, weak, intermediate) and it’s extensions by adding an implicative connectives (“natural” implications). The main result of our paper is the lattice that describes the relations between implicative extensions of regular logics.
[1] A.R. Anderson and N.D. Belnap, Entailment: The Logic of Relevance and Necessity, Princeton University Press (1975).
[2] D. Batens, Paraconsistent extensional propositional logics, Logique et Analyse 23:90–91 (1980), pp. 127–139.
[3] D.A. Bochvar, On a three-valued logical calculus and its applicaion ti the analysis of the paradoxes f the classical functional calculus, History and Philosophy of Logic 2 (1938/1981), pp. 87–112.
[4] H.-G. Ebbinghaus, Uber eine pradikatenlogik mit partiell definierten Pradikaten und Funktionen, Arch. Math. Logik Grundlagenforsch 12 (1969), pp. 39–53.
[5] V.K. Finn, A Criterion of Functional Completeness for B3, Studia Logica 33:2 (1974), pp. 121–125.
[6] M. Fitting, Kleene’s three valued logics and their children, Fundamenta Informaticae 20 (1992), pp. 113–131.
[7] K. Ha lkowska, A note on matrices for systems of nonsens-logic, Studia Logica 48:4 (1989), pp. 461–464.
[8] S. Hallden, The Logic of Nonsense, Uppsala, 1949.
[9] A.S. Karpenko, The Development of Many-Valued Logic, LKI Pblishers, Moscow, 2010 (in Russian).
[10] S.C. Kleene, Introduction to Metamatematics, D. Van Nostrand, Princeton, NJ, 1952.
[11] E.Y. Komendantskaya, Functional interdependence of regular Kleene logics, Logical Investigations 15 (2009), Nauka, Moscow, pp. 116–128 (in Russian).
[12] J. L ukasiewicz, O logice tr´ojwartosciowey, Ruch Filozoficzny 5 (1920), pp. 170–171. (English translation: On three-valued logic, L ukasiewicz J. Selected Works, NorthHolland & PWN, Amsterdam & Warszawa 1970.)
[13] J. L ukasiewicz, A. Tarski, Untersuchungen u¨ber den Aussagenkalkul, Comptes Rendus des S´eances de la Soci´et´e des Sciences et des Lettres de Varsovie, III(23) (1930), pp. 1–21. (English translation: Investigations into the sentential calculus, Lukasiewicz J. Selected Works, North-Holland & PWN Amsterdam & Warszawa, 1970.)
[14] N. Resher, Many-valued Logic, McGraw-Hill, New York 1969.
[15] L.I. Rozonoer, On contradictions discovering in formal theories. I, Automation and Remote Control 6 (1983), pp. 113–124 (in Russian).
[16] B. Sobocin´ski, Axiomatization of a partial system of three-valued calculus of propositions, The Journal of Computing Systems 11:1 (1952), pp. 23–55.
[17] A.M. Sette, On propositional calculus P1, Mathematica Japonica 16 (1973), pp. 173–180.
[18] N. Tomova, Regular Kleene’s logics: extension and generalization, Ph.D. dissertation, Lomonosov Moscow State University, 2010 (in Russian).
Information: Reports on Mathematical Logic, 2012, Number 47, pp. 173-182
Article type: Original article
Russian Academy of Sciences, Petersburg, Russia
Published at: 28.08.2012
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 1991
Number of downloads: 1098