The notion of connectedness in mathematical analysis of XIX century
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEThe notion of connectedness in mathematical analysis of XIX century
Data publikacji: 19.09.2014
Czasopismo Techniczne, 2014, Nauki Podstawowe Zeszyt 1 NP (7) 2014, s. 195 - 209
https://doi.org/10.4467/2353737XCT.14.071.2521Autorzy
The notion of connectedness in mathematical analysis of XIX century
The notion of connectedness was introduced by Listing in 1847 and was further developed by Riemann, Jordan and Poincaré. The notion and rigorous definition of metric and topological space were formed in Frechet’s works in 1906, and in Hausdorff’s works in 1914. The notion of continuum could be traced back to antiquity, but its mathematical definition was formed in XIX century, in the works of Cantor and Dedekind, later of Hausdorff and Riesz. Karl Weierstrass (1815–1897) brought mathematical analysis to a rigorous form; also, the notions of future areas of mathematics – functional analysis and topology – were formed in his reasoning. Weierstrass’s works were not translated into Russian, and his lectures were not published even in Germany. In 1989, synopses of his lectures devoted to additional chapters of the theory of functions were published. Their material served as the basis for this article.
Jejler L., Pis’ma k uchenym, Izd-vo AN SSSR, Moskva–Leningrad 1963, 336-340.
Listing J.B., Vorstudien zur Topologie, J.B. Listing, Göttingen 1848.
Listing J.B., Der Census raumlicher Complexe oder Verallgemeinerung des Euler’schen Satzes von den Polyeder, J.B. Listing, 1862.
Riman B., Sochinenija, Moskva–Leningrad 1948, 52.
Kantor G., Trudy po teorii mnozhestv, Moskva 1985, 40–139.
Ketsier T., Mill J. van, By their fruits ye shall know them: some remarks on the interaction of general topology with other areas of Mathematics (http://www.math.vu.nl/~vanmill/papers/ papers1999/teun.pdf), 3.
Klein F., Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Teil I, Berlin 1926, 327.
Sinkevich G.I., Razvitie ponjatija nepreryvnosti u Sharlja Mere, Trudy X Mezhdunarodnyh Kolmogorovskih chtenij: sbornik statej, Izd-vo JaGPU, Jaroslavl’ 2012, 180-185.
Heine E., Die Elemente der Functionenlehre, J. Reine Angew. Math., 74, 1872, 172-188.
Sinkevich G.I., Georg Kantor & Pol’skaja shkola teorii mnozhestv, Izd-vo SPbGASU, 2012, 356.
Weierstrass K., Ausgewählte Kapitel aus der Funktionenlehre. Vorlesung gehalten in Berlin 1886 mit der Akademischen Antrittsrede, Berlin 1857, und drei weiteren Originalarbeiten von K. Weierstrass aus den Jahren 1870 bis 1880/86, Teubner-Archiv zur Mathematic, Band 9, 272, Reprint 1989.
Dini U., Fondamenti per la teoria delle funzioni di variabili reali, Nistri, Pisa 1878, VIII+407.
Kol’man Je., Bernard Bol’cano, Moskva 1955, 192.
Sinkevich G.I., Uliss Dini i ponjatie nepreryvnosti, Istorija Nauki i Tehniki, 10, 2012, 3-11.
Borgato M.T., Continuity and discontinuity in Italian mathematics after unification: from Brioschi to Peano, Organon, 41, 2009, 219-232.
Dini U., Grundlagen für eine Theorie der Funktionen einer veränderlichen relleen Grösse, Leipzig 1892, XVIII+554.
Pincherle S., Saggio di una introduzione alla teoria delle funzioni analitiche secondo i principi
del prof. C Weierstrass, Napoli 1880, 124.
Fréchet M., Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22, 1906, 1-74.
Riesz F., Stetigkeit und Abstrakte Mengenlehre, Atti del IV Congresso Internationale dei Matematici, vol. 2, Rome 1908, 18-24.
Hausdorf F., By their fruits ye shall know them: some remarks on the interaction of general topology with other areas of Mathematics (http://www.math.vu.nl/~vanmill/papers/papers1999/ teun.pdf), 16.
Hausdorff F., Grundzüge der Mengenlehre, von Veit, Leipzig 1914.
Mioduszewski E., Connectedness, [in:] Encyclopedia of General Topology, Elsevier, Amsterdam 2003, 223-226.
Wilder R.L., Evolution of the topological concept of “connected”, Amer. Math. Monthly, 85, 1978, 720-726.
Turner L., Gösta Mittag-Leffler in the Development and Internationalization of Mathematics in Sweden and Beyond, 1880–1920 (http://css.au.dk/fileadmin/www.ivs.au.dk/css.au.dk/Turner_ PhD_Thesis_2012.pdf).
Bottazzini U., Gray J., Hidden Harmony – Geometric Fantasies, Springer, New York 2013, 848.
Informacje: Czasopismo Techniczne, 2014, Nauki Podstawowe Zeszyt 1 NP (7) 2014, s. 195 - 209
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
The notion of connectedness in mathematical analysis of XIX century
The notion of connectedness in mathematical analysis of XIX century
Department of Mathematics, St. Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia
Publikacja: 19.09.2014
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 2112
Liczba pobrań: 1713