Concepts of modern technologies of obtaining valuable biomass-derived chemicals
cytuj
pobierz pliki
RIS BIB ENDNOTEWybierz format
RIS BIB ENDNOTEConcepts of modern technologies of obtaining valuable biomass-derived chemicals
Data publikacji: 29.08.2018
Czasopismo Techniczne, 2018, Volume 8 Year 2018 (115), s. 35 - 58
https://doi.org/10.4467/2353737XCT.18.114.8889Autorzy
Concepts of modern technologies of obtaining valuable biomass-derived chemicals
W niniejszej pracy przedstawiono przegląd nowoczesnych technologii uzyskiwania cennych związków chemicznych pochodzących z biomasy, takich jak furfural, kwas lewulinowy, kwas adypinow dihydroksyaceton, kwas mlekowy i kwas akrylowy. Zaprezentowano również własne podejście badawcze obejmujące projektowanie w skali nanoskopowej zeolitów do odwadniania kwasu mlekowego do kwasu akrylowego.
In this paper, we present the review of modern technologies for obtaining valuable biomass-derived chemicals, such as furfural, levulinic acid, adipic acid, dihydroxyacetone, lactic acid and acrylic acid. We have included our own research approach using the nano-design of zeolites for the dehydration of lactic acid into acrylic acid.
[1] Pacala S., Socolow R., Stabilization wedges: solving the climate problem for the next 50 years with current technologies, Science 305/2004, 968–972.
[2] Werpy T., Petersen G., Top Value Added Chemicals from Biomass: Vol. I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Report No. NREL/TP-510-35523; National Renewable Energy Laboratory, Golden, CO, 2004.
[3] The roadmap for biomass technologies in the U.S., Biomass R&D Technical Advisory Committee, US Department of Energy, Accession No. ADA 436527, 2002.
[4] Lalak J., Kasprzycka A., Murat A., Paprota E.M., Tys J., Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacyjnej metanowej, Acta Agrophysica 21/2014, 51–62.
[5] Burczyk B., Biorafinerie: Ile w nich chemii ?, Wiadomości chemiczne, 63/2009, 9–10.
[6] Corma A., Iborra S., Velty A., Chemical Routes for the Transformation of Biomass into Chemicals, Chemical Reviews 107/2007, 2411–2502.
[7] Tan K.T., Lee K.T., Mohamed A.R., Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol, Energy Policy, 36/2008, 3360–3365.
[8] Clark J., Deswarte F., Introduction to Chemicals from Biomass, Second Edition, John Wiley & Sons, Ltd. Published by John Wiley & Sons, Ltd., 2015.
[9] Balat M., Balat H., Oz C., Progress in bioethanol processing, Progress in Energy and Combustion Science 34/2008, 551–573.
[10] Lin Y.-C., Huber G.W., The critical role of heterogeneous catalysis in lignocellulosic biomass conversion, Energy Environmental Science 2/2009, 68–80.
[11] Gandini A., The irruption of polymers from renewable resources on the scene of macromolecular science and technology, Green Chemistry 13/2011, 1061–1083.
[12] Huber W., Iborra S. and Corma A., Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chemical Reviews 106/2006, 4044–4098.
[13] Langan P., Gnanakaran S., Rector K. D., Pawley N., Fox D. T., Cho D. W., Hammel K. E., Exploring new strategies for cellulosic biofuels production, Energy Environmental Science 4/2011, 3820–3833.
[14] da Costa Sousa L., Chundawat S. P. S., Balan V., Dale B. E., ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies , Current Opinions Biotechnology 20/2009, 339–347.
[15] Himmel M. E., Ding S. Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., Foust T. D., Science 315/2007, 804.
[16] Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick, Jr W. J., Hallett J. P. and Leak D. J., et al., Science 311/2006, 484.
[17] Wiercigroch E., Szafraniec E., Czamara K., Pacia M. Z., Majzner K., Kochan K., Kaczor A., Baranska M., Malek K., Raman and infrared spectroscopy of carbohydrates: A review, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 196/2018, 413–417.
[18] Jarvis M.C., McCann M.C., Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem, 38/2000, 1–13.
[19] Ding S.-Y., Liu Y.-S., Zeng Y., Himmel M. E., Baker J. O., Bayer E. A., How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility?, Science 338/ 2012, 1055–1060.
[20] Dorrestijn E., Laarhoven L. J.J., Arends I. W.c.E., Mulder P., The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, Journal of Analalysis and Applied Pyrolysis 54/2000, 153–192.
[21] Gosselink R.J.A., de Jong E., Guran B., Abächerli A., Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN), Industrial Crops and Products 20/2004 121–129.
[22] Björkman A., Isolation of Lignin from Finely Divided Wood with Neutral Solvents, Nature 174/1954, 1057–1058.
[23] Zheng, R., Wei, W., Shi Q., Density Functional Theory Study on Sum-Frequency Vibrational Spectroscopy of Arabinose Chiral Solutions, Journal of Physical Chemistry A 113/2009, 157–164.
[24] Brauer B., Pincu M., Buch V., Bar I., Simons J. P., Gerber R. B., Vibrational Spectra of α-Glucose, β-Glucose, and Sucrose: Anharmonic Calculations and Experiment, Journal Physical Chemistry A 115/2011, 5859–5872.
[25] Rinaldi R., Schüth F., Design of solid catalysts for the conversion of biomass, Energy Environmental Science 2/2009, 610–626.
[26] Stöcker M., Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials, Angewandte Chemistry Int Ed Engl. 47/2008, 9200–9211.
[27] Pérez-Ramírez J., Christensen C.H., Egeblad K., Christensen C.H., Groen J.C., Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design, Chemical Society Reviews 37/2008, 2530–2542.
[28] Verboekend D. , Pérez-Ramírez J., Design of hierarchical zeolite catalysts by desilication, Catalysis Science and Technology 1/2011, 879–890.
[29] Milina M., Mitchell S., Crivelli P., Cooke D., Pérez-Ramírez J., Mesopore quality determines the lifetime of hierarchically-structured zeolite catalysts, Nature Communication 5/2014, 4922.
[30] Zhang X.Q., Trinh T.T., van Santen R.A., Jansen A.P.J., Mechanism of the Initial Stage of Silicate Oligomerization, Journal of American Chemical Society 133/2011, 6613–6625.
[31] Szyja B.M., Hensen E. J. M., van Santen, R.A., Retro-analysis of silicate aggregation in pentasil zeolite formation, Catalysis Today 169/2011, 156–166.
[32] Yang G., Pidko E., Hensen, E. J. M., Structure, Stability, and Lewis Acidity of Mono and Double Ti, Zr, and Sn Framework Substitutions in BEA Zeolites: A Periodic Density Functional Theory Study, Journal of Physical Chemistry C 117/2013, 3976–3986.
[33] Lisboa O., Sanchez M., Ruette F., Modeling extra framework aluminum (EFAL) formation in the zeolite ZSM-5 using parametric quantum and DFT methods, Journal of Molecular Catalysis A: Chemistry 294/2008, 93–101.
[34] Malola S., Svelle S., Bleken F. L., Swang O., Detailed Reaction Paths for Zeolite Dealumination and Desilication From Density Functional Calculations, Angewandte Chemistry Int. Ed. 51/2012, 652–655.
[35] Fjermestad, T.; Svelle, S.; Swang, O. Detailed Reaction Paths for Zeolite Dealumination and Desilication From Density Functional Calculations, J. Phys. Chem. C 117/2013, 13442–13451.
[36] Silaghi M.C., Chizallet C., Raybaud P., Challenges on molecular aspects of dealumination and desilication of zeolites, Micro. Mesop. Materials 191/2014, 82–96.
[37] Dhainaut J., Dacquin J.-P., Lee A.F., Wilson K., Hierarchical macroporous–mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis, Green Chemistry 12/2010, 296–303.
[38] Davis M.E., Heterogeneous Catalysis for the Conversion of Sugars into Polymers, Topics in Catalysis 58/2015, 405–409.
[39] Cejka J., Corma A., Zones S., Zeolites and Catalysis: Synthesis, Reactions and Applications, Vol. 1, 2010 WILEY-VCH.
[40] Li Y.P., Head-Gordon M., Bell A.T., Analysis of the Reaction Mechanism and Catalytic Activity of Metal-Substituted Beta Zeolite for the Isomerization of Glucose to Fructose, ACS Catal. 4/2014, 1537−1545.
[41] Saravanamurugan S., Paniagua M., Melero J.A., Riisager A., Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media, Journal of American Chemical Society 135/2013, 5246−5249.
[42] Graca I., Iruretagoyena D., Chadwick D., Glucose isomerisation into fructose over magnesium-impregnated NaY zeolite catalysts, Applied Catalysis B: Environmental 206/2017, 434–443.
[43] Moreau C., Durand R., Roux A., Tichit D., Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites, Applied Catalysis A: General 193/ 2000, 257–264.
[44] Alonso D.M., Bond J.Q., Dumesic J.A., Catalytic conversion of biomass to biofuels, Green Chemistry 12/2010, 1493–1513.
[45] Nandiwale K.Y., Galande N.D., Thakur P., Sawant S. D., Zambre V. P., and Bokade V.V., One-Pot Synthesis of 5-Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro/Mesoporous H-ZSM-5 Catalyst, ACS Sustainable Chemical Engineering 2/2014, 1928–1932.
[46] Zhang Z., Zhao Z., Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride, Bioresource Technology 102/2011, 3970–3972.
[47] Guan J., Cao Q., Guo X., Mu X., The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: A theoretical study, Computational and Theoretical Chemistry 963/2011, 453–462.
[48] Otomo R., Yokoi T., Kondo J.N., Tatsumi T., Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural, Applied Catalysis A: General 470/2014, 318–326.
[49] Hu L., Wu Z., Xu J., Sun Y., Lin L., Liu S., Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid, Chemical Engineering Journal 244/2014, 137–144.
[50] Chanie Y., Diaz I., Perez E., Kinetics and mechanisms of adsorption/desorption of the ionic liquid 1-buthyl-3-methylimidazolium bromide into mordenite, Journal of Chemical Technology and Biotechnology 91/2016, 705–710.
[51] Zhang L., Xi G., Chen Z., Qi Z., Wang X., Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO-34 catalyst, Chemical Engineering Journal 307/2017, 877–883.
[52] Moreno-Recio M., Santamaria-Gonzalez J., Maireles-Torres P., Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural, Chemical Engineering Journal 303/2016, 22–30.
[53] Song S., Di L., Wu G., Dai W., Guan N., Li L., Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization, Applied Catalysis B: Environmental 205/ 2017, 393–403.
[54] Gallo J.M.R., Alonso D.M., Mellmer M.A., Yeap J.H., Wong H.C., Dumesic J.A., Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent, Topics in Catalysis 56/2013, 1775–1781.
[55] Gϋrbϋz E.I., Gallo J.M.R., Alonso D.M., Wettstein S.G., Lim W.Y., Dumesic J.A., Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone, Angewandte Chemistry Int. Ed. 52/2013, 1270–1274.
[56] Murzin D.Y., Kusema B., E. Murzina E.V., Aho A., Tokarev A., Boymirzaev A.S., Wärnĺ J., Dapsens P.Y., Mondelli C., Pérez-Ramírez J., Salmi T., Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites, Journal of Catalysis 330/2015, 93–105.
[57] O’Neill R., Ahmad M.N., Vanoye L., Aiouache F., Kinetics of Aqueous Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite, Engineering and Chemistry Resources 48/2009, 4300–4306.
[58] Bruce S.M., Zong Z., Chatzidimitriou A., Avci L.E., Bond J.Q., Carreon M.A.,. Wettstein S.G., Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent, Journal of Molecular Catalysis A: Chemical 422/2016, 18–22.
[59] Kikhtyanin O., Bulanek R., Frolich K., Cejka J., Kubicka D., Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites, Journal of Molecular Catalysis A: Chemical 424/ 2016, 358–368.
[60] Zhang L., Xi G., Chen Z., Jiang D., Yu H., Wang X., Highly selective conversion of glucose into furfural over modified zeolites, Chemical Engineering Journal 307/2017, 868–876.
[61] Kumar V.B., Pulidindi I.N., Mishra R.K., Gedanken A., Ga Modified Zeolite Based Solid Acid Catalyst for Levulinic Acid Production, Chemistry Select 1/2016, 5952–5960.
[62] Ya’aini N., Amin N.A.S., Asmadi M., Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst, Bioresource Technology 116/2012, 58–65.
[63] Zeng W., Cheng D., Zhang H., Chen F., Zhan X., Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions, Reaction Kinetics and Mechanisms of Catalyts 100/2010, 377–384.
[64] Ramli N.A.S., Amin N.A.S., Fe/HY zeolite as an effective catalyst for levulinic acid productionfrom glucose: Characterization and catalytic performance, Applied Catalysis B: Environmental 163/2015, 487–498.
[65] Ramli N.A.S., Amin N.A.S., Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst, Chemical Engineering Journal 283/2016, 150–159.
[66] Chamnankid B., Ratanatawanate C., Faungnawakij K., Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water, Chemical Engineering Journal 258/2014, 341–347.
[67] Jow J., Rorrer G.L., Hawley M.C., Dehydration of D-fructose to levulinic acid over LZY zeolite catalyst, Biomass 14/1987, 185–194.
[68] Antunes M.M., Lima S., Neves P., Magalhaes A.L, Fazio E., Fernandes A., Neri F., Silva C.M., Rocha S.M., Ribeiro M.F., Pillinger M., Urakawa A., Valente A.A, One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis router, Journal of Catalysis 329/2015, 522–537.
[69] Bui L., Luo H., Gunther W.R., Roman-Leshkov Y., Domino Reaction Catalyzed by Zeolites with Brřnsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural, Angewandte Chemistry Int. Ed. 52/2013, 8022 –8025.
[70] Wang J., Jaenicke S., Chuah G.K., Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction, RSC Advances 4/2014, 13481–13489.
[71] Pavone A., Bio-based adipic acid, A private report by the Process Economics Program Report 284, Santa Clara, California 2012.
[72] Lari G.M., Mondelli C., Perez-Ramirez J., Gas-Phase Oxidation of Glycerol to Dihydroxyacetone over Tailored Iron Zeolites, ACS Catalysis 5/2015, 1453−1461.
[73] Dapsens P.Y., Kusema B.T., Mondelli C., Pérez-Ramírez J., Gallium-modified zeolites for the selective conversion of bio-baseddihydroxyacetone into C1–C4 alkyl lactates, Journal of Molecular Catalysis A: Chemical 388–389/2014, 141–147.
[74] Dapsens P.Y., Menart M.J., Mondelli C., Pérez-Ramírez J., Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation, Green Chemistry 16/2014, 589–593.
[75] Hammaecher, C., Paul, J.-F. Density functional theory study of lactic acid adsorption and dehydration reaction on monoclinic 011, 101, and 111 zirconia surfaces, J.ournal of Catalysis 300/2013, 174–182.
[76] Ohara T., Sato T., Shimizu N., Prescher G., Schwind H., Weiberg O., Marten K., Greim H., Acrylic Acid and Derivatives in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim 2003.
[77] Mäki-Arvela, P., Simakova, I., Salmi, T., Murzin, D. Yu., Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities – A Review, Chemical Reviews 114/2014, 1909–1971.
[78] https://mcgroup.co.uk/news/20140508/china-leads-acrylic-acid-market-terms-production-consumption.html (access: 15.04.2018).
[79] Yan B., Li-Zhi Tao, Liang Y., Bo-Qing Xu, Sustainable Production of Acrylic Acid: Catalytic Performance of Hydroxyapatites for Gas-Phase Dehydration of Lactic Acid, ACS Catalysis 4/2014, 1931–1943.
[80] Wang H., Yu D., Sun P., Yan J., Wang Y., Huang H., Rare earth metal modified NaY: Structure and catalytic performance for lactic acid dehydration to acrylic acid, Catalysis Communications 9/2008, 1799–1803.
[81] Sun P., Yu D., Fu K., Gu M., Wang Y., Huang H., Ying H., Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid, Catalysis Communications 10/2009, 1345–1349.
[82] Yan J., Yu D., Heng H.L., Sun P., Huang H., NaY zeolites modified by La3+ and Ba2+: the effect of synthesis details on surface structure and catalytic performance for lactic acid to acrylic acid, Journal of Rare Earths. 28/2010, 803.
[83] Sun P., Yu D., Tang Z., Li H., Huang H., NaY Zeolites Catalyze Dehydration of Lactic Acid to Acrylic Acid: Studies on the Effects of Anions in Potassium Salts, Industrial Engineering and Chemical Resources 49/2010, 9082–9087.
[84] Sun P., Yu D., Fu K., Gu M., Wang Y., Huang H., Ying H., Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid, Catalysis Communications 10/2009, 1345–1349.
[85] Zhang X., Lin L., Zhang T., Liu H., Zhang X., Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts, Chemical Engineering Journal 284/2016, 934–941.
[86] Yuan C., Liu H., Zhang Z., Lu H., Zhu Q., Chen Y., Alkali‐metal‐modified ZSM‐5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid, Chinese Journal of Catalysis 36/2015, 1861–1866.
[87] Yan B., Mahmood A., Liang Y., Xu B.Q., Sustainable production of acrylic acid: Rb+- and Cs+-exchanged Beta zeolite catalysts for catalytic gas-phase dehydration of lactic acid, Catalysis Today 269/2016, 65–73.
[88] Hong J.H., Lee J.-M., Kim H., Hwang Y.K., Chang J.-S., Halligudi S.B., Han Y.-H., Efficient and selective conversion of methyl lactate to acrylic acid using Ca3(PO4)2–Ca2(P2O7) composite catalysts, Applied Catalysis A 396/2011, 194–200.
[89] Zhang Z., Qu Y., Wang S., Wang J., Effect of Municipal Sewage Treatment Plant Effluent on Bioaccumulation of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in the Recipient Water, Environmental Science Technology 41/2007, 6026–6032.
[90] Murphy B.M., Letterio, M.P. and Xu B., Catalyst Deactivation in Pyridine-Assisted Selective Dehydration of Methyl Lactate on NaY, ACS Catalysis 7/2017, 1912–1930.
[91] CEH Marketing Research Report Acrylic Acid and Esters, SRI Consulting, https://chemstore.ihsmarkit.com/products/ceh-acrylic-acid-and-esters (access: 15.04.2018).
[92] Blanco E., Lorentz C., Delichere P., Burel L., Vrinat M., Millet J.M.M., Loridant S., Dehydration of ethyl lactate over alkaline earth phosphates: Performances, effect of water on reaction pathways and active sites, Applied Catalysis B: Environmental 180/2016, 596–606.
[93] Corma, A., Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev. 95/1995, 559–614.
Informacje: Czasopismo Techniczne, 2018, Volume 8 Year 2018 (115), s. 35 - 58
Typ artykułu: Oryginalny artykuł naukowy
Tytuły:
Concepts of modern technologies of obtaining valuable biomass-derived chemicals
Concepts of modern technologies of obtaining valuable biomass-derived chemicals
Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Publikacja: 29.08.2018
Status artykułu: Otwarte
Licencja: Żadna
Udział procentowy autorów:
Korekty artykułu:
-Języki publikacji:
AngielskiLiczba wyświetleń: 1607
Liczba pobrań: 1439