
35

TECHNICAL TRANSACTIONS 8/2018
CHEMISTRY

DOI: 10.4467/2353737XCT.18.114.8889 
submission of the final version: 15/07/2018

Izabela Czekaj  orcid.org/0000-0001-9322-940X
iczekaj@chemia.pk.edu.pl
Natalia Sobuś  orcid.org/0000-0002-5776-6934

Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering  
and Technology, Cracow University of Technology

Concepts of modern technologies of obtaining  
valuable biomass-derived chemicals

Koncepcje nowoczesnych technologii pozyskiwania  
cennych związków chemicznych z biomasy

Abstract
In this paper, we present the review of modern technologies for obtaining valuable biomass-derived 
chemicals, such as furfural, levulinic acid, adipic acid, dihydroxyacetone, lactic acid and acrylic acid. We have 
included our own research approach using the nano-design of zeolites for the dehydration of lactic acid into 
acrylic acid. 
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Streszczenie
W niniejszej pracy przedstawiono przegląd nowoczesnych technologii uzyskiwania cennych związków 
chemicznych pochodzących z  biomasy, takich jak furfural, kwas lewulinowy, kwas adypinowy, 
dihydroksyaceton, kwas mlekowy i kwas akrylowy. Zaprezentowano również własne podejście badawcze 
obejmujące projektowanie w skali nanoskopowej zeolitów do odwadniania kwasu mlekowego do kwasu 
akrylowego. 
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1.  Introduction

Nowadays, crude oil and natural gas are the main sources for the production of fuels 
and feedstock chemicals. These resources are limited and the application of (renewable) 
alternatives will be needed in the future to sustain the progress of mankind. A major challenge 
of society research is to create fuels and chemical intermediates from available and renewable 
materials that do not compete with food crops for water or fertilizers [1]. 

Biomass is the one exceptional sustainable source for chemicals and fuels [2]. The U.S. 
Department of Energy has predicted that 25% of chemicals and 20% of transportation 
fuels will be prepared from biomass in the next two decades [3]. The main objective of the 
European Union, as well as other countries, is to make every effort to reduce global warming 
caused by the processing of fossil fuels. All attempts to protect the environment from the 
negative effect of economic development are included in the so-called climate packet, which 
describes the reduction of greenhouse gas emissions as well as developing and implementing 
efficient and modern technologies [4, 5]. In addition, quantitative targets have been 
introduced in EU countries until 2020, the so-called “3 x  20%”. It involves a  reduction of 
greenhouse gases by 20% compared to 1990, a  reduction of energy consumption by 20% 
by 2020 and an increase in the use of renewable energy resources to 20% [6]. Recently, 
technologies using organic waste as a raw material have been dynamically developing, as well 
as biomass for energy production, which constitutes 67% of primary energy, of which 48.1% 
is lignocellulosic biomass [7]. As a result of conducting research and creating technologies 
for receiving products from biomass, a new branch of industry was established – biorefinery 
[4, 5, 8, 9]. In this perspective, heterogeneous catalysis possesses have a tremendous potential 
for overcoming scientific and engineering barriers, thus rendering feasible and economic bio-
based conversion routes [10]. Biomass does not allow a direct extrapolation of petrochemical 
technologies. The abundant presence of oxygen makes biomass-derived molecules soluble in 
water, of low volatility, highly reactive, and prone to decomposition at high temperature. In the 
literature, numerous pathways (dehydrations, oxidations, hydrogenations, hydrogenolysis, 
isomerizations) are proposed to produce a large number of molecules [6,11]. Nevertheless, 
transforming these theoretical conversion routes into industrial reality is not straightforward.

2.  Lignocellulosic biomass

Biomass from woody plant materials (e.g. corn and wood wastes, grass etc.) is 
a  promising biorenewable feedstock [12]. However, the use of biomass for feedstock 
production requires a  sequence of chemical conversions, which is blocked by the main 
building: carbohydrates. Recently, global efforts have been underway to convert plant cell 
walls (which are collectively called lignocellulosic biomass) to biofuels for transportation 
needs [13–15]. At first, this requires breaking down the lignocellulose nanostructure of 
biomass. Lignocellulose is built from cellulose crystals embedded in hemicellulose sugars 
and lignin polyphenols (Fig. 1) [16]. 
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Cellulose is the most abundant and important constituent in plant cell walls. Its crystal 
structure and complex network with other carbohydrate polymers are key factors determining 
the mechanical strength and degradability of plant cell walls [18, 19]. Another constituent is 
lignin, which is removed from wood meal by the paper industry. Lignin is one of the three 
main biopolymers, together with cellulose and hemicellulose, which builds the cell walls of 
plants. Lignin consists of aryl ethers, irregularly connected by a variety of linkages [20]. Lignin 
is taken as a base material to manufacture biopolymers by conventional polymer techniques. 
A further application field is agriculture; lignin products can be the basis for delayed-action 
fertilizers, which release nutrients slowly or serve as support for the production of humus 
in the soil. In view of its chemical composition, lignin is a  rich raw material for aromatic 
(phenolic) compounds with a high added value. In 2004, the pulp and paper industry alone 
produced 50 million tons of extracted lignin, but only approximately 2% of the lignin available 
is used commercially, with the remainder used as a  low-value fuel [21]. The extraction of 
lignin from wood is especially difficult.

There are a few explanations for the difficulty in extracting lignin [22]: (i) strong covalent 
bonds exist between lignin and carbohydrates, (ii) lignin has a high molecular weight and 
possibly forms a  three-dimensional network [23], (iii) hydrogen bonds and physical 
phenomena, such as solid solution, may be involved in the retention of lignin in the wood-
fiber wall. Pretreatment of lignocellulose requires extreme conditions (e.g. temperature, 
pressure, and reagent, which are toxic for environment). Cellulose is building up the 
structural substance of unlignified cell walls and consists of fibrous macromolecules based 
on anhydroused d-glucose units. Single polysaccharide chains are hydrogen bonded and 
build microfibrils, which are resistant to hydrolysis. A high degree of polymerization causes 
orientation, elasticity and a large tensile strength of this carbohydrate. Hemicellulose is also 
a polysaccharide (such as arabinose, glucose, galactose, mannose and xylose) and consists of 
different monomers building a random, amorphous structure. Arabinose is aldopentose and 
mainly a component of hemicelluloses and pectins [17, 23, 24].

The general scheme (Fig. 2) illustrates the processes of fuels, chemicals and energy 
production from the biomass. The most crucial for the environment are three first steps 
(Fig. 2, dark blue color): (i) lignocellulose conversion (e.g. via dissolution by ionic liquids 
or hydrothermal gasification by Ru-catalysts), (ii) methanation by Ni-catalysts, (iii) selective 
conversion into chemicals (via isomerization, dehydration, oxidation etc. by e.g. zeolites). 

Fig. 1.	 The chemical composition of lignocellulose and the main products of catalytic hydrolysis [17]
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All these three classes of processes require various types of catalysts, but they are connected 
and depend on each other, e.g. methanation and conversion into chemicals processes depend 
strongly on products mixture of lignocellulose conversion.

3.  Zeolites in biomass conversion

Zeolites are very promising materials for biomass conversion into lactates, acrylates 
and may be valuable products derived from biomass. Zeolites, microporous and crystalline 
aluminosilicates, are effective catalysts in many applications [6]. The different zeolitic materials 
are characterized by a  variety of micropore structures featuring specific sizes, shapes, and 
connectivity (Figure 3) as well as possibility to tune acid/base properties. Due to the ability to 
catalyze many types of hydrocarbon reactions zeolites are ideal candidates for the production 
of chemicals from biomass [25, 26]. Zeolites are effective three-dimensional supports for 
active nanoparticles. However, industrial performance and selectivity of microporous zeolites 
to the desired chemicals at the industrial scale is far from being optimal due to the limited 
access to the micropores with active basic/acid sites or nanoparticles and diffusion limitations. 
From the other hand ordered microporous metallosilicates containing auxiliary mesoporosity, 
have shown improved performance compared to purely microporous zeolites in a wide range 
of catalyzed reactions. The introduction of mesopores into the microporous zeolite network 
by selective demetallation has been shown to lead to strong variations in performance and 
changing the access to the active sites, enhancing catalyst selectivity and activity [27, 28]. 
Mesopores introduction is known to depend on internal properties of the zeolites (framework 
type and composition) resulting in a  different distribution of mesopores. Structural origin 
increased mesopore surface area. However, up to now, knowledge about the demetallation 
process on the atomistic level is almost not existent. One of the major obstacles to unimproved 
understanding is the difficulty in modeling a  complicated structure of zeolites mesopores. 

Fig. 2.	 Scheme illustrating the processes of biomass conversion

Fig. 3.	 Differences in natural micropores in various zeolite structures
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The mesoporous structuring of conventional zeolites by post-synthetic modification is 
one of the most efficient means of enhancing their performance in diffusion-limited reactions 
[6]. The extent and distribution of the introduced mesopores have experimentally been 
observed to depend strongly on the intrinsic properties of the zeolite [29]. As the catalytic 
benefits of mesoporosity in zeolites primarily derive from an enhanced molecular transport, 
the extent and distribution of mesopores created within the zeolite crystals can be expected to 
have critical implications. Therefore, it is important to understand the structure of micro- and 
mesopores and their role in: (i) transport properties of adsorbates, (ii) distribution of metallic 
nanoparticles. Evidently, the molecular-level description of the synthesis and properties 
of mesoporous zeolites would be highly valuable to rationalize the demetallation behavior 
of zeolites. However, the complex structure of zeolites, particularly when integrating non-
periodic mesopores, and the difficulty in accounting for their interaction with aqueous media, 
comprise major barriers to an improved theoretical understanding, which remains limited. 
The framework defects are expected to have an essential role in the mesopores formation 
process and give good perspectives to understand demetallation. One of the major obstacles 
to an improved understanding is the difficulty in modeling the complex and non-periodic 
structure of mesopores in zeolites. Several groups were tackled ZSM-5 crystal structure and 
model adsorption processes using both cluster and periodic DFT calculations [30–36].

The original acid/base properties can also be precisely modified to match the requirements 
of the target reaction. By depositing metal nanoparticles, additional functionalities can be 
integrated into one material. The use of a zeolite as a carrier for the metal phase is expected 
to be very favorable for obtaining a material with desirable properties. The mesopore zeolites 
have an even larger external surface into which the metal phase can be deposited, thus 
achieving higher dispersion, and the closer proximity of the metal and acid/base site in the 
solid with respect to the corresponding micropore zeolite. Zeolite-based catalysts have not 
been extensively applied in biomass conversion so far and never in mesoporous form, but 
the results are primarily promising [37]. Micro- and mesoporous zeolites are attractive and 
suitable catalysts for liquid-phase conversions taking into account their water compatibility 
and the benefits provided by a porous system for the transport to/from the active sites of 
typically highly viscous biomass-derived compounds. However, more detailed studies on the 
structure of active sites and metallic nanoparticles carried in zeolites, as well as the mechanism 
of biomass conversion into chemicals, are necessary.

4.  Selected compounds from biomass

4.1.  Fructose: aldo-keto isomerization of glucose

Acquiring fructose from biomass, due to low raw material costs, is an interesting pathway 
for obtaining a variety of useful monomers. One of the methods of fructose production is 
the aldol-keto isomerization from biomass-derived glucose. Figure 4  shows the reaction 
pathways of glucose and fructose [38]. Fructose may be an intermediate in subsequent 
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transformations to HMF or lactic acid. One of the concepts of performing fructose reactions 
is to obtain a  catalyst with Lewis active centers. For this purpose, the Sn-Beta zeolite was 
designed, which has the ability to convert glucose to fructose. The presence of additional 
sodium cations in the structure enables the glucose reaction to mannose [38,39]. In order to 
confirm the effectiveness of the above catalyst, theoretical studies were carried out using the 
DFT method. Reaction barriers for partially hydrolyzed and fully coordinated tin at specific 
locations using energy distribution analysis were tested. In addition, Sn was replaced with 
other metals such as Ti, Zr, V, Nb, Si and Ge. It has been found that Sn and Zr are metals 
that have the lowest energy barrier for glucose isomerization. It also depends on the physical 
properties of metals and the basicity of the centers of active oxygen atoms associated with the 
metal atom [40]. Another example of the zeolite usage in the glucose isomerization reaction 
is Y, H-beta and H-USY zeolite. The reaction occurs in two stages in various solvents. The first 
step is the reaction of the isomerization of glucose in methanol to produce methyl-fructoside, 
followed by hydrolysis to fructose after the addition of water. The reaction takes place at 
120°C for 1h involving the above-mentioned catalysts. As a result of the process, the product 
was obtained with the highest yield of 55% using H-USY. Conducting this process at higher 
temperatures leads to a product like methyl levulinate [41].

The process of glucose isomerization to fructose was also carried out on NaY zeolite with 
magnesium cations incorporated into zeolite (0-15 wt.%). It was observed that the increase 
in magnesium content in the structure (10 and 15% by weight) significantly improves the 
degree of glucose conversion (6-49%). However, the yield of fructose was only about 32% 
[42]. Tests were also carried out with the zeolites A, X, Y and hydrotalcites. Alkaline cations: 
Na+, K+, Cs+, Ca2+, Ba2+ were introduced into the structure of these materials on the basis of 
ion exchange. The process was carried out in an aqueous environment at 95°C, at 8 bar. The 
best among the tested zeolites were NaX and KX zeolites with a selectivity into fructose of 
about 90% and a conversion of glucose of around 10-20% [43].

The further essential processes of fructose transformation into glyceraldehyde (GLA) and 
dihydroxyacetone (DHA) are retro-aldol reactions. 

Fig. 4.	 Scheme of reaction pathways of glucose and fructose
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4.2.  5-hydroxymethylfurfural and furfural

The production of 5-hydroxymethylfurfural (HMF) and furfural should be essential 
for the industry since both compounds are used as a substrate in several syntheses. HMF is 
formed by the dehydration process of different aldoses from the hydrolysis of biomass [44]. 
HMF can be converted to a range of derivatives having potential applications in the biofuels, 
polymer, and solvent industries. There are several promising studies concerning catalytic 
processes of HMF production from biomass over a  range of catalysts from hydroxyapatite 
supported chromium chloride, metal chlorides up to ZSM-5 [45–47]. 

Examples of reactions catalyzed with the corresponding zeolites are given in Figure 5. One 
of the zeolites used in the production of HMF is the dealuminated BEA zeolite, which has 
been formed by the calcination of the NH4+BEA form at a temperature above 700°C or the 
treatment of this material with steam in 500°C. The Si-O-Al bonds inside the zeolite structure 
are broken, resulting in an increase of Lewis active centers. The calcinated BEA zeolite has 
been used in the reaction of the conversion of glucose to HMF with a selectivity of 55% at 
a 78% conversion [48]. Another possibility is to conduct the process of HMF production from 
glucose in a 1-butyl-3-methylimidazolium chloride solvent with BEA zeolite (Si / Al = 25) as 
a catalyst. The catalyst has the highest activity, resulting in HMF with a 50.3% yield at a 80.6% 
glucose conversion at 150°C for 50 minutes [49]. The HMF production process is also possible 
in the ionic liquid 1-butyl bromide-3-methylimidazolium solvent in MOR zeolite [50]. Also, 
the conversion of glucose to HMF takes place with the participation of catalysts such as SAPO-
34 [51], H-, Fe-, Cu-ZSM-5 [52] or over the hierarchical Zr-Al-BEA [53].

Additionally to the conversion of biomass to HMF, it is also important to obtain furfural. 
Furfural is one of the strategical and ultimate industrial intermediates [54]. Furfural is 
converted into furfuryl alcohol, methylfuran and furan via metal-catalyzed hydrogenation, 
reduction and decarbonylation, respectively (see Figure 6). Also, different valuable products 
are produced from furfural: α-furfuryl alcohol, tetrahydrofurfuryl alcohol, methylfurfuryl 
alcohol, 5-dimethylaminomethylfurfuryl alcohol, furoic acid, furfurylamine, methylfuran, 
2-acetylfuran and 2,5-dimethoxydihydrofuran.

Fig. 5.	 Scheme illustrating the targeted product (HMF) from biomass-derived feedstocks and its usage 
as a substrate in further synthesis into valuable chemicals [44]
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The reaction of C5 monosaccharides (xylose, arabinose, ribose derived from corn fiber) to 
furfural using H-beta zeolites, sulfuric acid (VI) and H-mordenite has been carried out. The 
furfural has been obtained with yields of 62, 55 and 44% respectively, using H-beta, H-mordenite 
and sulfuric acid. The H-beta zeolite has been found to be the most active due to the presence 
of Brönsted and Lewis centers (respectively at a  ratio of 1.66). The H-beta catalyst gives 
a bifunctional effect: isomerization (due to the presence of the Lewis center) and dehydration 
(presence of the Brönsted center) of monosaccharides into HMF [54]. Dumesic et al. developed 
a reaction to obtain HMF from xylose, fructose and glucose using various catalysts. Their process 
had been carried out in γ-valerolactone at 175°C. Catalysts that were used were γ-Al2O3, 
Sn-beta, Sn-SBA-15, H-ZSM-5, zirconium sulfate, 0.02M sulfuric acid (VI), Nafion-SAC-13, 
sulfonated carbon, H-beta, Amberlyst 70, SBA-15 functional with propylsulfonic acid. From all 
tested catalysts, H-mordenite has the highest activity: in the case of glucose conversion (97%), 
HMF has been obtained with a yield of 32% and 36% for fructose at a 100% conversion rate [55]. 

A process of hydrolytic hydrogenation of arabinogalactan from hemicellulose into 
5-hydroxymethylfurfural and furfural in the presence of a modified Ru-USY zeolite (Si/Al 
= 15 and 30, 1-5% ruthenium) has also been developed [56]. Another example is the usage 
of H-ZSM-5 zeolite in the dehydration of xylose to furfural. The process was carried out in 
the temperature range of 140-220°C. The highest selectivity was obtained at 200°C [57]. The 
other zeolites, such as SAPO-34 zeolites [58] and K-BEA [59], have the ability to carry out 
this reaction. Zhang et al. conducted a process of glucose conversion on BEA zeolites (ion 
exchange Fe-BEA, Sn-BEA, Zr-BEA). A  furfural and HMF were obtained as by-products. 
Sn-Beta zeolite showed the highest activity, giving a product with a yield of 69.2% [60].

4.3.  Levulinic acid and γ-valerolactone

Levulinic acid is one of the platform molecules used as a precursor for pharmaceuticals, 
plasticizers, and various other additives. It can be obtained through hydrolysis/dehydration 
of aldohexoses such as glucose and fructose, or hexose-containing polymers like starch and 
cellulose. 

Fig. 6.	 Scheme illustrating the targeted product (furfural) from biomass-derived feedstocks and its 
usage as a substrate in further synthesis into valuable chemicals
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Levulinic acid was obtained as a  result of glucose, starch and cellulose conversion in 
a hydrothermal process using Ga-MOR zeolite [61]. The process lasted for 6 hours at 175°C 
with a  yield of 59.9%. Amin et al. have developed a  hybrid catalyst containing chromium 
chloride and an HY zeolite. As a result of the reaction at 145.2°C for 146.7 min., they obtained 
a product with a yield of 55.2% [62]. Another example is the dehydration of glucose using 
MFI zeolite with different silicon module (Si/Al = 25, 30, 80, 120, 260). This process was 
carried out at 180°C for 8  hours. The MFI zeolite with the silicon module 30 has been 
found the most active; the product obtained in this case had a yield of 35.8% [63]. They also 
developed a number of Fe-HY catalysts with various percentages of iron (5, 10, 15%). Among 
the above catalysts, the 10% Fe-HY catalyst showed the highest catalytic efficiency of around 
62% [64,65]. Levulinic acid (LA) has also been obtained by the conversion of xylose in the 
presence of hot steam using alkaline zeolite catalysts. Zeolite Y was treated with a sodium 
base with various molar concentrations (0.05 M and 0.25 M). The dealuminated Y zeolite, 
0.25 M NaOH proved to be the most effective catalyst. The product was obtained with a yield 
of 30.4% and a conversion of 84.3%. The process was carried out for 3 hours at 170°C [66]. 
Zeolite LZY has also found application in the catalytic dehydration of fructose. The process 
was carried out in a  batch reactor at 140°C for 15 hours. From 1  g of fructose, 0.432 g  of 
levulinic acid has been obtained [67]. 

The γ-valerolactone (GVL) is another biomass-derived chemical compound - a potential 
fuel and green solvent. The γ-valerolactone can be obtained from furfural by the hydrogenation 
process at 120°C in a 2-butanol solution on Zr-BEA and Al-MFI catalysts [39,68-70]. GVL 
is also produced via hydrogenation reaction from levulinic acid. Other important chemicals 
like 1,4-pentanediol or 2-methyltetrahydrofuran can be obtained by chemoselective 
hydrogenolysis of GVL. 

4.4.  Adipic acid

Adipic acid is used in the production of nylon, PVC and polyurethanes and its production 
is about 2.5 MTon/year. Adipic acid is produced from a  mixture of cyclohexanol and 
cyclohexanone, oxidative cleavage of cyclohexene using hydrogen peroxide or by the 
hydrocarboxylation of butadiene [71]. Adipic acid has traditionally been produced from 
various petroleum-based feedstocks (e.g., phenol, benzene, and cyclohexane), but shifts in 
the hydrocarbon market have resulted in the virtual elimination of phenol as a  feedstock. 
In recent years, cyclohexane-based processes have accounted for about 93% of the global 
production capacity. Two steps are involved in ADA production: 1) oxidation of cyclohexane 
to produce KA oil (cyclohexanone and cyclohexanol) and 2) nitric acid oxidation of KA oil 
to produce adipic acid.

Recently, start-up companies such as Rennovia, Verdezyne, BioAmber, Celexion, and 
Genomatica have developed bio-based routes to produce adipic acid. Rennovia’s patented 
a two-step process for the production of bio-based adipic acid from glucose: 

(i)	 a selective catalytic oxidation of glucose to glucaric acid
(ii)	 a selective catalytic hydrodeoxygenation of glucaric acid to adipic acid (see Figure 7).
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Two basic motivations for considering alternative biomass feedstock sources for the 
production of ADA are: 1) in the long term, they could be less expensive to produce than 
conventional methods using crude oil derivative cyclohexane and 2) societal demands for 
producing industrial chemicals via ‘sustainable’ methods or technology-specific market 
demand that results in requirements for producing ADA from bio-chemical resources. 
Potential catalysts for hydrodeoxygenation are metal (Ru, Pd, Sn, Pt) on ZSM-5. 

4.5.  Dihydroxyacetone

A new chemocatalytic technology for the continuous oxidation of glycerol (GLY) to 
dihydroxyacetone (DHA) in the gas phase has been developed. This process takes place 
over the Fe-MFI catalyst in the presence of molecular oxygen. The reaction was carried out 
in a  fixed bed reactor. Activation of the steam generator at 600°C shows dispersed iron in 
the form of cations and FeOx clusters, which guarantee a  product efficiency of 50% [72]. 
A method for converting dihydroxyacetone to C1-C4 alkyl lactate has also been developed. 
The process was carried out using MFI, MOR, FER, BEA zeolites with gallium particles. The 
Ga-FAU proved to be the most active, giving a product, such as n-propyl and n-butyl lactate 
and ethyl lactate [73]. Another possibility is the reaction of dihydroxyacetone into ethyl 
lactate in a Ga-USY catalyst [74].

4.6.  Lactic acid / alkyl lactates

Developing efficient catalysts for the conversion of bio-renewable feedstocks to a selected 
key chemical, such as lactic and acrylic acid esters (see Figure 8), which would be alternative 
to the currently present in the industry technologies of obtaining them from non-renewable 
resources, is the main issue for scientists working in the field of catalysis. 

Lactic acid is used in the food industry and for the production of other chemicals and 
polymers and its production is about 2.7 Mton/year. Lactic acid has three available atoms for 
adsorption: the oxygen atom of the alcohol group and the two oxygen atoms of the carboxyl 
group. Based on the literature [75], the lactic acid adsorption over metallic cations gives 
several possible binding modes at zirconia surfaces: monodentate, bidentate bridging and 
bidentate chelating, where a dissociative bidentate bridging mode is preferred. The classical 
pathway through a carbocation proceeds with a very high activation energy. Therefore, the 
authors suggested another mechanism through a carbanion and succeeded with the acrylic 
acid formation. 

Fig. 7.	 Scheme illustrating the targeted product (adipic acid) from biomass-derived feedstocks 
(glucaric acid)
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From all family of biomass-derived compounds lactic acid is the most promising and 
can generate multiple final and intermediate chemicals, such as acrylic acid, pyruvic acid, 
1,2-propanediol, 2,3-pentanedione or acetaldehyde (see Figure 9) [6, 26]. This compound 
can also be polymerized into biodegradable plastic, i.e. polylactide (PLA), or solvents.

Dehydration of lactic acid provides the most promising and environmentally friendly 
way to produce for example acrylic acid. However, the dehydration of lactic acid may 
be accompanied by other competing reactions, such as hydrogenation, condensation, 
decarboxylation and esterification, where the decarboxylation to acetaldehyde is one of the 

Fig. 8.	 Scheme illustrating the lactic acid and acrylic acid as well as their esters [44] 
(DHA=dihydroxyacetone)

Fig. 9.	 Scheme illustrating the lactic acid reactions [6]
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major side reactions and has a large effect on the low selectivity to acrylic acid. To inhibit the 
formation of acetaldehyde and improve the selectivity of the desired acrylic acid, the effects 
of many different catalysts are tested. 

5.  Catalytic dehydration of lactic acid/alkyl lactates to acrylic acid/alkyl acrylates

5.1.  State-of-art of actual research of obtaining acrylic acid and alkyl acrylates 

Acrylic acid is one of the most important compounds for the synthesis of organic. It is 
widely used for the preparation of a variety of materials. such as water absorbent polymers, 
adhesives, textile treating agents (see Figure 10). 

The most common industrial process for preparing acrylic acid is the selective oxidation of 
propylene. This is the basic method of obtaining the product in the fossil industry. Due to the 
high demand for fossil fuels and the relatively low stocks of crude oil, the price of propylene 
and its by-products grow, which leads to increased pressure on the production acrylic acid of 
the propylene. 

Acrylic acid is a platform molecule used as a building block to produce acrylate polymers 
and plastics [77]. Its production had a grown of 4%/year between 2006 and 2011, reaching 
4.2Mt in 2011 and was predicted to increase about 5% per year between 2012 and 2017, and 
recently, its production has been about 4.7 Mton/year. [78]. Acrylic acid is currently produced 
by the catalytic oxidation of propylene using a  two-step process (Figure 2). However, it is 
widely affected by the propylene price, as it only represents 2% of its global consumption 
[77]. The value of the acrylic acid market in the 2013 year was equal to 11 billion $ yearly and 
the forecast value before 2020 is around 18.8 billion $. In the next 5 years, the global demand 
for acrylic acid will be around 8.169 billion tons/year.

Fig. 10.	 Scheme illustrating the main directions of acrylic acid processing [76]
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An alternative route of producing acrylic acid is therefore required, especially in the 
context of the commitment to environment-friendly catalytic processes, for example, a single 
step dehydration of lactic acid. The catalytic dehydration of lactic acid to acrylic acid has 
received increasing attention in the last two decades, but high selectivity has proven elusive. 
Metal-exchanged zeolites are promising catalysts for further development for LA to AA 
dehydration. However, acrylic acid is rarely obtained selectively from lactic acid because 
of easy decarbonylation/decarboxylation leading to acetaldehyde and COx. High yields 
of acrylic acid were obtained using modified zeolites, but they suffered from coking and 
hydrothermal instability. 

In 1958, Holmen was first to show that acrylic acid can be obtained in the dehydration of 
lactic acid using a mixture of sodium sulfate and calcium sulfate as a catalyst.

One of the methods could be the dehydration of lactic acid over hydroxyapatite (Ca-HAP) 
catalysts with different mole ratios of Ca/P and calcination temperatures described by Bo Yan 
et al. [79]. Hydroxyapatites (HAP) are known as important acid–based catalysts. According 
to the study, the HAP sample (with Ca/P = 1.62 and calcination temperature 360 °C) was 
identified as the most effective for the selective formation of acrylic acid from lactic acid, 
showing an acrylic acid selectivity within a  range of 71–74 %  and an acrylic acid yield of 
50–62%. The gas-phase dehydration of lactic acid was conducted under atmospheric pressure in 
a vertical fixed-bed quartz reactor. The reaction feed, an aqueous solution containing 35.7 wt %  
or 10 mol % lactic acid with space velocity 2.1 h–1 and in 360 °C. 

Huang et al. [80–83] performed the LA dehydration process on NaY zeolites, modified 
by rare earth metals (lanthanum, cerium, samarium and europium) from which the La-NaY 
had the best selectivity. The catalysts were obtained by ion exchange of the corresponding 
cations (lanthanum, cerium, male and europium) in an aqueous nitrate solution. The 
modified zeolite was marked with the silicon module Si/Al = 4.5. Subsequent scientists have 
developed a catalyst by modifying NaY zeolite by potassium. The addition of potassium to 
NaY significantly improved its lifetime [84].

The other method of obtaining an acrylic acid, which was described by Xianghui Zhang et 
al. [85], involves ZSM-5 zeolite as a catalyst. It is well-known that ZSM-5 has strong acidic sites 
on the surface of H-ZSM-5, which gives a very low selectivity for acrylic acid. Fortunately, the 
surface acidity of H-ZSM-5 zeolite can be regulated in a wide range through alkaline treatment. 
At first, the H-ZSM-5 zeolite was treated with the NaOH aqueous solution. The dehydration 
reaction of lactic acid was carried out in a vertical fixed-bed steel reactor. Studies using 30 wt% 
lactic acid have shown that for differently modified ZSM-5 catalysts, lactic acid conversion 
changes little: it is only changing in the small range of 95.8–97.3% in the temperature range 
of 335–380°C. Although the selectivity for acrylic acid exhibits a  volcano-type dependence 
on NaOH concentrations, the best acrylic acid selectivity with over 65% could be achieved 
when the concentration of NaOH is 0.3–0.5 mol/L. Increasing the NaOH concentration 
causes a  decreased acrylic acid selectivity and appearance of other unknown products. The 
best catalytic performance, an achievement of lactic acid conversion of 96.9% and selectivity 
for acrylic acid accounting to 77.9%, were obtained over the resulted ZSM-5 catalyst treated by 
0.5 mol/L NaOH and 0.5 mol/L Na2HPO4 under the optimized reaction conditions (350 °C, 
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LHSV = 4 h-1). One of the main problems is the stability of catalysts for the dehydration reaction 
of lactic acid. Conversion of lactic acid in a reaction time of 52 hours is still 88% at a selectivity 
as high as 65% acrylic acid. A slight decrease in conversion and selectivity may be due to the 
inevitable deposition of coke, which is typical for acid-base catalysts.

Another way to modify ZSM‐5 zeolites is by using ion exchange with alkali metals [86]. 
ZSM‐5 zeolite (Si/Al molar ratio = 75) was preheated at 550 °C for 6 h and treated with an 
aqueous solution of MNO3 (1 mol/L; M = NH4, Li, Na, K, Rb, or Cs; 14 g of ZSM‐5 zeolite 
in 140 mL of MNO3) at 80 °C for 6 h to obtain ion‐exchanged ZSM‐5. The modified zeolites 
gave improved catalyst performance in lactic acid dehydration to acrylic acid. The conversion 
of lactic acid decreases in the following order: H> Li> Na-> K> Rb-> Cs modified ZSM-5. The 
highest selectivity of acrylic acid was prepared using a catalyst KZSM-5 (K0.84Na0.16ZSM-5). 
These results indicate that the introduction of the alkali metal effectively inhibited the 
decarbonylation and decarboxylation of lactic acid to acetaldehyde. It has been found that the 
introduction of alkali‐metal cations decreased the total acid‐base number, which improved 
acrylic acid selectivity.

A sequent article by Yan et al. discusses the dehydration of lactic acid carried by the Rb+- 
and Cs+-exchanged Beta zeolite catalysts [87]. In this case, raw powders of as-synthesized 
Beta zeolite (SiO2/Al2O3 =  ca. 40) were used and the Rb+- and Cs+-ions were added by 
ion-exchange with aqueous solutions of RbNO3 and CsNO3, respectively. The gas-phase 
dehydration of lactic acid was carried out under atmospheric pressure at 360 °C in a vertical 
down-flow, fixed-bed tubular quartz reactor. This study shows that the Rb+- and Cs+-
exchanged Na zeolites with suitable exchange degrees could be highly efficient for catalyzing 
the gas-phase dehydration of bio-derivative LA for sustainable AA production. Samples of 
Rb0.95Na0.05 and Cs0.81–0.90Na0.19–0.10 were identified as the best performing catalysts for AA 
production by optimizing the exchange degrees for Rb+ and Cs+, respectively, to uncover the 
suitable acidity–basicity balance, offering the acrylic acid selectivity as high as 69–70 % and 
yields higher than 65 mol%.

The alkyl lactates are more promising for acrylic acid and its esters production. Alkyl 
lactates are easier to vaporize and less polymerizable than lactic acid. Their ester functions 
that are less reactive limit decarbonylation/decarboxylation reactions. The standard 
industrial reaction for producing, for example, methyl acrylate is esterification with methanol 
under acid catalysis (sulfuric acid, p-toluene sulfonic acid, acidic ion exchangers [76]). Ethyl 
acrylate is produced by acid-catalyzed esterification of acrylic acid, which in turn is produced 
by oxidation of propylene. It may also be prepared from acetylene, carbon monoxide and 
ethanol by a Reppe reaction. Biomass as a  renewable resource for alkyl acrylate sounds to 
be more ecologically friendly, and much less robust technology is expected to be developed.

Interest in the use of alkyl lactate instead of lactic acid as a reactant to reach higher acrylic 
acid selectivity has been previously illustrated for Ca3(PO4)2 −Ca2(P2O7) (50/50 wt%) 
mixture [88]. The highest acrylic acid molar selectivity was found for ethyl lactate (79%), 
followed by methyl lactate (75%) and lactic acid (54%). Moreover, the use of alkyl lactates 
could simplify the separation and purification process and reduce production costs [89] even 
if it would imply the recycling of co-produced alcohols. In that regard, additional molecules of 
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alkyl lactates could be produced. Alkyl lactates (AL) have been shown to be effective starting 
materials for the production of acetaldehyde, 2,3-pentanedione, lactide (a biopolymer starting 
material), and alkyl acrylates (AA) [90]. Growth in the demand for acrylic acid is forecasted 
at 4.5% per year during 2016‒21, driven by the growth of acrylate esters at about 4%. After 
butyl acrylate and ethyl acrylate, methyl acrylate is the third most important acrylic ester 
with a worldwide annual production of about 200,000 tons per year [91]. The alkaline earth 
phosphates have been prepared and evaluated in the gas phase dehydration of ethyl lactate 
to acrylic acid and ethyl acrylate [92]. However, zeolites are much more promising materials 
for biomass conversion into lactates and acrylates. Zeolites, microporous and crystalline 
aluminosilicates, are effective catalysts in many applications [93].

5.2.  Nanodesign of zeolites and the process of biomass transformation into acrylic acid

Taking into account all the previously reviewed state-of-art papers concerning biomass 
valorization into valuable chemicals in our study, we are interested in designing a  new 
theoretical and experimental approach for the synthesis of acrylic acid from lactic acid over 
zeolite catalysts. The catalyst design of lactic acid dehydration, using both experimental and 
theoretical methods, helps in further development and synthesis of zeolite with a declared 
structure and obtaining a structure of substrates, products and intermediates. Actually, in our 
laboratory, the experimental and theoretical design of zeolite catalysts is performed. 

In the theoretical part, the electronic structure of all clusters was calculated by ab initio 
density functional theory (DFT) methods (program StoBe) using the non-local generalized 
gradient corrected functionals according to Perdew, Burke, and Ernzerhof (RPBE), in order 
to account for electron exchange and correlation. The stabilization of monomeric and dimeric 
iron and tin complexes, such as M-OH, HO-M-O-M-OH and M-O-M (where M= Fe, Sn) in 
the zeolites pore and at the surface (MFI, BEA, FAU) has been investigated. The example is 
BEA structure (Figure 11), where M-O-M dimers stabilized in micro- and mesopores.

Fig. 11.	 Dimeric complex M-Ob-M in the BEA: (a) ideal inside pore, (b) after hierarchization
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Experimentally, the dehydration reaction of lactic acid was carried out in a vertical fixed-bed 
quartz reactor (Figure 12) and operated under atmospheric pressure and with a temperature of 
350 oC. The reaction feed, which was an aqueous solution containing 40 wt% lactic acid with 
2cm3/h flow rates, was pumped into the reactor and driven by inert gas (50 mL/min). 

The metal M-Ob-M dimers have been found to be stable above oxygen bound with 
aluminum centers of MFI, BEA and FAU zeolites. The mechanism of direct lactic acid 
dehydration in Sn- and Fe- zeolites has been found. The geometric compatibility of the 
metallic dimers and lactic acid allows for the proposed direct dehydration mechanism (see 
Figure 13), where the oxygen center of the hydroxyl group of LA-a-carbon interacts with 
the metal center of dimer and hydrogen is subtracted from LA-b-carbon and bound with the 
bridge oxygen of the metal dimer. 

The results of our nano-design materials suggest that adsorption of lactic acid is 
endothermic in the case of Sn-BEA, slightly endothermic in ideal Fe-BEA and exothermic 
in the case of hierarchical Fe-BEA catalyst. The dehydration of lactic acid into acrylic acid 

Fig. 12.	 Unit for catalytic tests in the gaseous phase

Fig. 13.	Dimer M2O, lactic and acrylic acid structures at the surface model of BEA zeolite
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proceed with an energy barrier. However, the energy level of acrylic acid above Fe-BEA have 
been found to be lower than the energy level of lactic acid. The hierarchical metal modified 
BEA zeolite has been found theoretically to be the best catalyst for direct dehydration of 
lactic acid into acrylic acid. The hierarchization process increases the pore volume as well as 
increases the chance of adsorption of larger molecules at desired active sites. The theoretical 
results are confirmed experimentally. Besides acrylic acid, other products have been detected: 
pyruvic acid, 1,2-propanediol, 2,3-pentanedione, acetaldehyde and lactide. However, the 
process of lactic acid dehydration is very complex due to the fact of the formation of products 
in two liquid phases. Therefore, obtaining the full mass balance of reaction is very complicated 
and required further improvement. 

6.  Conclusions

The urgent needs for a more sustainable production of chemicals from renewable feedstock 
(e.g. biomass) have caused intensive research efforts in the search for novel porous nano-
materials, such as zeolites. Important properties of zeolites, which make them ideal candidates 
for the transformation of biomass into high-value chemicals, are their high hydrothermal 
stabilities. The problematic in using zeolites in biomass conversion is the production of a large 
number of products. The catalysts are still discovered through a combination of trial-and-error 
and serendipity due to a limited understanding of the molecular structure and the complexity 
of active centers. The main goal of the research should be zeolite design in a nano-scale with an 
improved catalytic performance, optimized for biomass transformation to dedicated chemicals. 
The research is focused on zeolites with different pore sizes. Another problem is the existence 
of many phases during processes, e.g. water and organic phases, which makes the process very 
difficult for industrial scale. Additionally, the products have a tendency to polymerize. 

We present here a comprehensive literature study on valuable biomass-derived chemicals 
and technologies connected with extraction and processing of: aldo-keto isomerization of 
glucose, 5-hydroxymethylfurfural and furfural, levulinic acid and γ-valerolactone, adipic 
acid, dihydroxyacetone, lactic acid and acrylic acid. From all the families of such biomass-
derived compounds, lactic acid and its alkyl lactates are the most promising and can generate 
multiple final and intermediate chemicals, such as acrylic acid, alkyl acrylates, pyruvic acid, 
1,2-propanediol, 2,3-pentanedione or acetaldehyde. This compound can also be polymerized 
into biodegradable plastic, i.e. polylactide (PLA), or solvents. Therefore, the development of 
biomass-derived processes requires a lot of multidisciplinary research before it would be finally 
applied in industrial practice. However, it is worth considering, especially by using zeolites 
with a more declare structure and design properties. Therefore, the methodology of designing 
simultaneously zeolites theoretically and experimentally that we have used gives an exceptional 
chance to obtain knowledge about the process and simultaneously modify its parameters. 
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