The Weak Kőnig Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEThe Weak Kőnig Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice
Publication date: 23.08.2012
Reports on Mathematical Logic, 2012, Number 47, pp. 63 - 86
https://doi.org/10.4467/20842589RM.12.003.0684Authors
The Weak Kőnig Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice
The standard omniscience principles are interpreted in a systematic way within the context of binary trees. With this dictionary at hand we revisit the weak Konig lemma (WKL) and Brouwer’s fan theorem (FAN). We first study how one can arrive from FAN at WKL, and then give a direct decomposition, without coding, of WKL into the lesser limited principle of omniscience and an instance of the principle of dependent choices. As a complement we provide, among other equivalents of the standard omniscience principles, a uniform method to formulate most of them.
Information: Reports on Mathematical Logic, 2012, Number 47, pp. 63 - 86
Article type: Original article
Titles:
The Weak Kőnig Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice
The Weak Kőnig Lemma, Brouwer’s Fan Theorem, De Morgan’s Law, and Dependent Choice
Ludwig-Maximilians-Universität München
Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
Dipartimento di Informatica, Università degli Studi di Verona Strada le Grazie 15, 37134 Verona, Italy
Leeds University
Published at: 23.08.2012
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2722
Number of downloads: 1934