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A b s t r a c t. The standard omniscience principles are interpreted

in a systematic way within the context of binary trees. With this

dictionary at hand we revisit the weak Kőnig lemma (WKL) and

Brouwer’s fan theorem (FAN). We first study how one can ar-

rive from FAN at WKL, and then give a direct decomposition,

without coding, of WKL into the lesser limited principle of omni-

science and an instance of the principle of dependent choices. As

a complement we provide, among other equivalents of the stan-

dard omniscience principles, a uniform method to formulate most

of them.
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.1 Introduction

This paper begins with a systematic interpretation in the context of binary

trees of the following fragments of the law of excluded middle: the limited,

the weak limited, the lesser limited, and the weak lesser limited principle

of omniscience; and Markov’s principle.

Using this interpretation, we study the interrelations of the following

properties, including their negations and double negations, of a binary tree

T : T is finite; T is well-founded; T has an infinite path. This enables us to

decompose the weak Kőnig lemma into the fan theorem and a higher-type

instance of the law of excluded middle.

We further have a closer look at the two fragments of De Morgan’s law

that occur in this context: the lesser limited and the weak lesser limited

principle of omniscience. Among other things, the former principle proves

tantamount to a variant of the weak Kőnig lemma.

Next, we consider some forms of countable and dependent choice for

disjunctions, and show how the weak Kőnig lemma can be decomposed

into such a form of dependent choice plus the lesser limited principle of

omniscience. Finally, we provide a uniform method to formulate all but

one of the aforementioned fragments of the law of excluded middle: as the

implication from A ⇒ B to ¬A∨B restricted to certain classes of assertions

A, B.

This paper is a contribution to the constructive variant, put forward as

a programme in [15, 16], of “reverse mathematics” [31].1 An intuitionistic

counterpart was started in parallel [18, 35], and there also is a “refined

intuitionistic reverse mathematics” [1, 4, 32].

We proceed in Bishop’s constructive mathematics [2, 3, 8, 9], the prin-

cipal characteristic of which is the exclusive use of intuitionistic logic.2

Since we are only concerned with basic operations on natural numbers and

binary strings, our results can be carried over to a formal system based

on intuitionistic analysis EL [33, 3.6] or on intuitionistic finite-type arith-

metic HAω [33, 9.1] enriched with quantifier-free number-number choice.

As in those two systems, we assume that our universe of functions (i.e.,

sequences) of natural numbers contains all the primitive recursive (or el-

ementary) functions, and is closed under composition and primitive re-

1Where also infinite games and related issues have been studies, see e.g. [22, 23, 24].
2For introductions to intuitionistic logic see, for instance, [10, 11, 34, 33, 30].
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THE WEAK KŐNIG LEMMA AND RELATED PRINCIPLES 65

cursion; in particular, our universe of functions is closed under bounded

minimisation. Following [25, 26, 27] we work in Bishop-style constructive

mathematics without any form of countable choice that is not derivable

from those assumptions.

.2 Preliminaries

By m,n, k, . . . we always mean elements of the set N = {0, 1, 2, . . .}. It is

sometimes useful to follow a set-theoretic tradition and identify each n ∈ N

with the set {0, . . . , n− 1} of its predecessors.

A (finite or infinite) binary sequence is a (finite or infinite) sequence of

elements of {0, 1}. We use α, β, γ, . . . and u, v, w, . . . as variables for the

infinite and finite binary sequences, respectively: that is, for the elements

of the sets {0, 1}N and

{0, 1}* =
⋃

{{0, 1}n : n > 0} .

We further denote the length of u by |u|; in other words,

|u| = n ⇔ u ∈ {0, 1}n .

The n-th finite initial segment

αn = (α (0) , . . . , α (n− 1))

of α has length n. In particular, α0 is the empty sequence (), the only one

of length 0. Likewise,

uk = (u (0) , . . . , u (k − 1))

is defined for every k 6 |u|. Note that u|u| = u, and that αnk = αk

whenever k 6 n.

We identify each binary sequence (a) of length 1 with its only element

a, and denote the concatenation of u and v by their juxtaposition uv. If

ui = w for some i ∈ {0, 1}, then w is an immediate successor of u. We

write u 6 w if u is a restriction of w: that is,

u 6 w ⇔ ∃v (uv = w) .
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An assertion D (x) about the elements x of a set X is decidable if there

is a function f : X → N such that D (x) is equivalent to f (x) = 0 for each

x ∈ X. A subset S of a set X is detachable if x ∈ S is a decidable assertion

about the elements x of X. In other words, a detachable subset can be

identified with its characteristic function.

An assertion A (x) about the elements x of a set X is

— simply existential if it has the form ∃nD (x, n) with D (x, n) a decid-

able assertion;

— simply universal if it has the form ∀nD (x, n) with D (x, n) a decid-

able assertion.

(We have seen the notion of a simply existential assertion first in [8], and

both are used in [1].) We sometimes write ∆0, Σ
0
1, and Π0

1 for the classes of

the decidable, the simply existential, and the simply universal assertions,

respectively. Note that finite disjunctions (respectively, finite conjunctions)

of simply existential (respectively, simply universal) assertions are simply

existential (respectively, simply universal).

We next study the versions of Countable Choice (CC∨) and of Depen-

dent Choice (DC∨) for disjunctions [15, 16.5]:

CC∨ ∀n (A0(n) ∨A1(n)) ⇒ ∃α∀nAα(n)(n) ;

DC∨ ∀u (A0(u) ∨ A1(u)) ⇒ ∃α∀nAα(n)(αn) .

Proposition 1. DC∨ implies CC∨.

Proof. If ∀n (A0(n) ∨ A1(n)), then ∀u (A0(|u|) ∨ A1(|u|)); whence, by

DC∨, there is α with ∀nAα(n)(|αn|) or, equivalently, ∃α ∀nAα(n)(n). 2

By Γ-CC∨ (respectively, by Γ-DC∨) we denote CC∨ (respectively, DC∨)

as restricted to an assertion class Γ:

Γ-CC∨ is CC∨ for all assertions A0 (n) and A1 (n) which belong to Γ ;

Γ-DC∨ is DC∨ for all assertions A0 (u) and A1 (u) which belong to Γ .

By inspection of the proof of Proposition 1 one can prove the following:

Corollary 2. Γ-DC∨ implies Γ-CC∨ whenever Γ is ∆0, Σ
0
1, or Π0

1.
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THE WEAK KŐNIG LEMMA AND RELATED PRINCIPLES 67

Proposition 3. ∆0-DC∨ and ∆0-CC
∨ are provable.

Proof. In view of Corollary 2 it suffices to prove ∆0-DC∨.

Let ∀u (A0(u) ∨A1(u)). By primitive recursion, one can construct the

leftmost possible path α with ∀nAα(n)(αn): simply set

α (n) = min {i ∈ {0, 1} : Ai (αn)}

for every n. 2

To prove the converse of Proposition 1 we need—in addition to ∆0-

DC∨—the following coding, which holds for the supposed presence of all

primitive recursive functions:

CODE There are functions f : N → {0, 1}∗ and g : {0, 1}∗ → N with

f ◦ g = id{0,1}∗ .

Proposition 4. CC∨ implies DC∨.

Proof. Assume that f and g are as in CODE. If ∀u (A0(u) ∨ A1(u)),

then, in particular, ∀n (A0 (f(n)) ∨A1(f(n))); whence by CC∨ there is

β with ∀nAβ(n)(f(n)). Since ∀u (β (g(u)) = 0 ∨ β (g(u)) = 1), by ∆0-DC∨

there exists α such that ∀n (β (g(αn)) = α(n)). For this α we have

∀nAβ(g(αn))(f(g(αn))) or, equivalently, ∀nAα(n)(αn). 2

As for Proposition 1 and Corollary 2, a close look at the proof of Propo-

sition 4 shows that this implication, too, can be relativised (recall that a

decidable assertion is identified with its characteristic function):

Corollary 5. Γ-CC∨ implies Γ-DC∨ whenever Γ is ∆0, Σ
0
1, or Π0

1.

.3 Binary trees and omniscience principles

The Limited Principle of Omniscience (LPO), the Weak Limited Principle

of Omniscience (WLPO), and Markov’s Principle (MP) read as follows

[8]:

LPO A ∨ ¬A for all simply existential assertions A ;

WLPO ¬A ∨ ¬¬A for all simply existential assertions A ;
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MP ¬¬A ⇒ A for all simply existential assertions A .

It is plain that LPO is equivalent to the conjunction of WLPO and MP.

The negations of the simply existential assertions are precisely the simply

universal assertions. In particular, WLPO is equivalent to

B ∨ ¬B for all simply universal assertions B ,

the counterpart of LPO for simply universal assertions rather than simply

existential ones. (The corresponding counterpart of MP is of no interest for

it is generally valid: if A is simply universal, then A is of the form ¬B with

B simply existential, and ¬¬A ⇒ A is nothing but ¬¬¬B ⇒ ¬B, which

holds for every B.)

A subset T of {0, 1}* is closed under restrictions if

u 6 w ∧w ∈ T ⇒ u ∈ T ;

any such T is inhabited precisely when () ∈ T . A tree is an inhabited,

detachable subset T of {0, 1}* that is closed under restrictions.

A tree T is

— finite if ∃n ∀u (|u| = n ⇒ u /∈ T ) ,

— infinite if ∀n ∃u (|u| = n ∧ u ∈ T ) .

A tree T is finite if and only if it is a finite set in the usual sense that there

is a uniquely determined N ∈ N, the cardinality of T , for which there is a

bijection between {1, . . . , N} and T .3 (In fact N > 0 for T is inhabited.)

Moreover, a tree is infinite if and only if it is an infinite set according to

any of the following two equivalent definitions:

(a) for every finite subset F of T there is u ∈ T with u /∈ F ;

(b) for every N ∈ N there is a subset of T that has cardinality N .

3Since {0, 1}* is a discrete set (that is, u = v∨u 6= v for all u, v), for subsets T of {0, 1}*

there is no need to distinguish “finite” from “finitely enumerable” [8, 21] (or “subfinite”

[2, 3]), which means the existence of a—not necessarily uniquely determined—N ∈ N

together with a mapping from {1, . . . , N} onto T . In fact, if a discrete set is finitely

enumerable, then it is finite.
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THE WEAK KŐNIG LEMMA AND RELATED PRINCIPLES 69

(To arrive from (a) at (b) requires induction.) Clearly, (b) follows from

(c) there is an infinite sequence of mutually distinct elements of T ,

whereas by quantifier-free number-number choice together with CODE and

primitive recursion one can show that (a) implies (c).

Throughout this paper, the first and easy lemma will be used without

mention.

Lemma 6. If T is a tree, then T is infinite if and only if it is not finite,

and the assertions “T finite” and “T infinite” are simply existential and

simply universal, respectively.

Proof. Let T be a tree. It suffices to observe that

∀u (|u| = n ⇒ u /∈ T ) and ∃u (|u| = n ∧ u ∈ T )

are decidable assertions about n each of which is the negation of the other.

2

If the simply existential assertion A is of the form ∃nD (n) with D (n)

a decidable assertion, then

T [A] = {()} ∪
⋃

{

{0, 1}n+1 : n > 0 ∧ ¬D (0) ∧ . . . ∧ ¬D (n)
}

is a tree with

A ⇔ ∃n
(

T [A] =
⋃

{

{0, 1}k : 0 6 k 6 n
})

and ¬A ⇔ T [A] = {0, 1}∗ .

Lemma 7. For every simply existential assertion A the tree T [A] is

such that A (respectively, ¬A) holds if and only if T [A] is finite (respec-

tively, T [A] is infinite).

In all, we have the following proposition.
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Proposition 8.

1. LPO is equivalent to “every tree is either finite or infinite”.

2. WLPO is equivalent to “every tree is either infinite or not infinite”.

3. MP is equivalent to “if a tree is not infinite, then it is finite”.

A statement similar to the last item of the preceding proposition can

be found in [4, Lemma 3.2]: the counterpart of MP on type level 2, i.e. the

stability of all Σ0
2-formulas, is equivalent to “if a recursive set of integers is

not infinite, then it is finite”.

A tree T

— is well-founded [33, 4.8.1] if ∀α∃n (αn /∈ T ) ;

— has an infinite path if ∃α∀n (αn ∈ T ) .

Each of the properties “T is well-founded” and “T has an infinite path”

clearly entails the negation of the other. The reverse implications will occur

in the sequel.

Lemma 9. For every simply existential assertion A the tree T [A] is

such that A (respectively, ¬A) holds if and only if T [A] is well-founded

(respectively, T [A] has an infinite path).

It is in order to indicate that to prove the implication “if T [A] is well-

founded, then A holds” (in fact, to prove “if T [A] is well-founded, then T [A]

is finite”, see Lemma 7) requires to have at least one infinite path at one’s

disposal. The assumptions we have made about our universe of functions

ensure, for instance, the presence of the path which is constantly zero.

Proposition 10. MP is equivalent to the following statement:

(∗) If a tree has no infinite path, then this tree is well-founded.

Proof. Assume first MP, and let T be a tree. By MP we have

∀α (¬∀n (αn ∈ T ) ⇒ ∃n (αn /∈ T )) ,

from which

∀α¬∀n (αn ∈ T ) ⇒ ∀α∃n (αn /∈ T )
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follows—or, equivalently,

¬∃α∀n (αn ∈ T ) ⇒ ∀α ∃n (αn /∈ T ) ,

which is nothing but (∗) for the tree T under consideration.

To deduce MP from (∗), let A be a simply existential assertion, and set

T = T [A]. By Lemma 9, ¬¬A amounts to “T has no infinite path”. By

(∗), this implies that T is well-founded, which is equivalent to A again by

Lemma 9. 2

.4 The weak Kőnig lemma and Brouwer’s fan theorem

If a tree has an infinite path, then this tree is infinite; if a tree is finite, then

it is well-founded. The reverse implications are known as the Weak Kőnig

Lemma (WKL) and as (an equivalent [7, 16] of) Brouwer’s Fan Theorem

(FAN):

WKL Every infinite tree has an infinite path;

FAN Every well-founded tree is finite.

The contrapositives of WKL and FAN read as follows:

WKL′ If a tree has no infinite path, then this tree is not infinite;

FAN′ If a tree is infinite, then this tree is not well-founded.

Note in this context that every implication A ⇒ B entails its contrapositive

¬B ⇒ ¬A, which is equivalent to all the iterated contrapositives. In fact,

¬¬A ⇒ ¬¬B implies ¬¬¬B ⇒ ¬¬¬A, which is an equivalent of ¬B ⇒ ¬A.

Some of the next results have counterparts in [12, Proposition 3.3].

Lemma 11.

1. WKL′ is equivalent to the following statement:

If a tree is infinite, then it cannot fail to have an infinite path.

2. FAN′ is equivalent to the following statement:
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If a tree is well-founded, then it is not infinite.

Proof. The following are equivalent for arbitrary assertions A and B:

A ⇒ ¬B ; ¬ (A ∧B) ; B ⇒ ¬A . 2

It is well known (see, e.g., [16]) that WKL implies FAN in the presence

of MP. This can be sharpened:

Corollary 12. The following items are equivalent:

1. WKL′+MP ;

2. If a tree has no infinite path, then it is finite;

3. FAN +MP .

4. FAN′ +MP .

Proof. The equivalence of items 1 and 2 and of items 2 and 3 is

readily seen if one understands MP as characterised in Proposition 8 and

in Proposition 10, respectively. Using the former characterisation of MP

and the equivalent of FAN′ given in Lemma 11 it is plain that items 3 and

4 are equivalent. 2

It can be proved without using MP that WKL implies FAN [13, 16]. In

fact, FAN is equivalent to WKL as restricted to trees with, in an appropriate

sense, at most one infinite path [6, 29] (see [5, 28] for related results). Since

WKL′ implies FAN′, we thus have the following situation:

WKL ⇒ WKL′

⇓ ⇓

FAN ⇒ FAN′

In the sequel we will discuss the following statements: first,

(♭) If a tree is not well-founded, then it cannot fail to have an infinite

path,

which is the contrapositive of (∗) and equivalent to

If a tree has no infinite path, then it cannot fail to be well-founded;

Publikacja objęta jest prawem autorskim. Wszelkie prawa zastrzeżone. Kopiowanie i rozpowszechnianie zabronione.  
Publikacja przeznaczona jedynie dla klientów indywidualnych. Zakaz rozpowszechniania i udostępniania serwisach bibliotecznych
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next, the counterpart of (∗) with “has an infinite path” and “is well-

founded” interchanged:

(†) If a tree is not well-founded, then this tree has an infinite path;

and, finally, the stability of “has an infinite path” and “is well-founded”:

(§) If a tree cannot fail to have an infinite path, then it has an infinite

path;

(♮) If a tree cannot fail to be well-founded, then it is well-founded.

Lemma 13.

1. The conjunction of (♭) and (§) is equivalent to (†).

2. The conjunction of (♭) and (♮) is equivalent to (∗).

Proof. If A ⇒ ¬B, then ¬¬B ⇒ ¬A; whence the following are equiv-

alent:

¬A ⇒ B; (¬B ⇒ ¬¬A) ∧ (¬¬B ⇒ B); (¬A ⇒ ¬¬B) ∧ (¬¬B ⇒ B) .

2

Proposition 14.

1. WKL ⇔ WKL′+(§) ;

2. WKL′ ⇔ FAN′+ (♭) ;

3. WKL ⇔ FAN′+(†) .

Proof. In view of Lemma 13, part 3 follows from parts 1 and 2, which

are readily shown with Lemma 11 at hand. 2

Corollary 15.

1. WKL ⇔ FAN + (†) .

2. Under the assumption of (†) the following are equivalent: WKL;

WKL′; FAN′; FAN.
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.5 Fragments of De Morgan’s law

We first recall the Lesser Limited Principle of Omniscience (LLPO):

LLPO ¬ (A0 ∧ A1) ⇒ ¬A0∨¬A1 for all simply existential assertions A0,

A1 .

Lemma 16. LLPO is equivalent to the statement that

∀u¬ (A0 (u) ∧ A1 (u)) ⇒ ∀u (¬A0 (u) ∨ ¬A1 (u)) (1)

holds for all assertions A0 (u) and A1 (u) which are simply existential for

every u .

Proof. It is clear that LLPO implies

∀u (¬ (A0 (u) ∧ A1 (u)) ⇒ ¬A0 (u) ∨ ¬A1 (u)) ,

from which (1) follows. As for the converse, apply (1) to Ai (u) ≡ Ai. 2

The following is [8, Chapter 1, Problem 1]; we give a proof for complete-

ness’s sake, and refer to [1, Theorem 3.14] for the underivability of WLPO

from LLPO in HA.

Lemma 17. WLPO implies LLPO.

Proof. Let A0 and A1 be simply existential assertions, and assume

¬ (A0 ∧ A1). By WLPO both ¬A0∨¬¬A0 and ¬A1∨¬¬A1: that is, either

¬A0 ∨ ¬A1 or else ¬¬A0 ∧ ¬¬A1. The latter alternative is equivalent to

¬¬ (A0 ∧ A1), which contradicts ¬ (A0 ∧ A1). 2

If T is a detachable subset of {0, 1}*, then so are

uT = {uv : v ∈ T} and Tu = {v : uv ∈ T}

for every u. Note that (uT )u = T and u (Tu) ⊆ T , and that ()T = T and

T() = T . If T is closed under restrictions, then so is Tu; moreover, u ∈ T

precisely when () ∈ Tu. In all, if T is a tree, then Tu is a tree—the “subtree

of T with root u”—precisely when u ∈ T .

Lemma 18. Any α is an infinite path in a tree T precisely when Tαn is

infinite for all n.
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THE WEAK KŐNIG LEMMA AND RELATED PRINCIPLES 75

Proof. If αk ∈ T for all k > n, then Tαn is infinite. Conversely, if

Tαn is infinite, then () ∈ Tαn or, equivalently, αn ∈ T . 2

Let T be a tree. Since Tu \ {()} = 0Tu0 ∪ 1Tu1, we have

Tu finite ⇔ Tu0 finite ∧ Tu1 finite , (2)

Tu infinite ⇔ ¬ (Tu0 finite ∧ Tu1 finite) .

Proposition 19. LLPO is equivalent to the statement that, for every

tree T ,

T infinite ⇒ T0 infinite ∨ T1 infinite . (3)

Proof. By (2), LLPO implies (3) for every tree T . As for the converse,

let A0 and A1 be simply existential assertions. Consider the tree

T = {()} ∪ 0T [A0] ∪ 1T [A1] .

For every i ∈ {0, 1} we have Ti = T [Ai] and thus, in view of Lemma 7,

Ti finite ⇔ Ai and Ti infinite ⇔ ¬A .

By (2), the required instance of LLPO follows from (3). 2

Corollary 20. WKL implies LLPO.

Proof. Assume WKL. To show LLPO as characterised by Proposition

19, let T be an infinite tree. By WKL, T has an infinite path α. Hence

Tα(0) = Tα1 is infinite (Lemma 18). 2

The following principle similar to (3) has occurred with parameters in

[4, p. 189].

1-Kőnig For all decidable assertions Di(ni) with i ∈ {0, 1},

∀n0∀n1 (D0(n0) ∨D1(n1)) ⇒ ∀n0D0(n0) ∨ ∀n1D1(n1) . (4)

The implication from LLPO to 1-Kőnig was indicated in the proofs of [1,

Theorems 2.7, 3.1]. Now ifDi(ni) is a decidable assertion for each i ∈ {0, 1},

and Ai ≡ ∃ni ¬Di(ni), then

¬ (A0 ∧ A1) ⇐⇒ ∀n0∀n1 (D0(n0) ∨D1(n1)) ,

¬A0 ∨ ¬A1 ⇐⇒ ∀n0D0(n0) ∨ ∀n1D1(n1) .

Hence we have the following:
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Proposition 21. LLPO and 1-Kőnig are equivalent.

We next formulate the Weak Lesser Limited Principle of Omniscience

(WLLPO):

WLLPO ¬ (¬A0 ∧ ¬A1) ⇒ ¬¬A0 ∨ ¬¬A1 for all simply existential as-

sertions A0, A1 .

For proofs that LLPO implies WLLPO using real numbers and binary

sequences see [20, Theorem 4.1, Theorem 4.2] and [14, Proposition 1.2],

respectively. While WLLPO occurs as LLPE in the former reference, in

the latter LLPO and WLLPO are called SEP and MP∨, respectively. Our

choice of the name for WLLPO is motivated by the fact that WLLPO is to

LLPO just as WLPO is to LPO. More precisely, WLLPO is tantamount

to

¬ (B0 ∧B1) ⇒ ¬B0 ∨ ¬B1 for all simply universal assertions B0, B1 ,

the counterpart of LLPO for simply universal assertions rather than simply

existential ones. Note also that WLLPO is equivalent to the statement that,

for every tree T ,

¬ (T0 infinite ∧ T1 infinite) ⇒ T0 not infinite ∨ T1 not infinite ,

just as LLPO was characterised in Proposition 19.

Furthermore, WLLPO follows from MP, which is called LPE in [20].

More precisely, MP is equivalent to WLLPO in conjunction with the weak

Markov principle WMP [14, Proposition 1.1]—or, in other terms, LPE is

equivalent to LLPE plus WLPE [20, Section 1]. Also, WMP is a conse-

quence of a form of Church’s thesis for disjunctions, under which it thus is

equivalent to MP [14, Proposition 2, Theorem 1].

Here is another approach to the implications from LLPO and from MP

to WLLPO. We say that a decidable assertion D (n) holds for at most one

n if m = n whenever D (m) and D (n). It is well-known that LLPO and

MP can equivalently put as follows:

LLPO0 If a decidable assertion D (n) holds for at most one n, then there

is i ∈ {0, 1} with ∀k¬D (2k + i).
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MP0 For every decidable assertion D (n) which holds for at most one n,

if ¬∀n¬D (n), then there is i ∈ {0, 1} with ∃kD (2k + i).

A similar characterisation of WLLPO was inspired by the proof of [14,

Proposition 1] and by a remark in [19, Section 3]:4

WLLPO0 For every decidable assertion D (n) which holds for at most one

n, if ¬∀n¬D (n), then there is i ∈ {0, 1} with ∀k¬D (2k + i).

In MP0 and WLLPO0 the index i ∈ {0, 1} is uniquely determined by the

required property.

Lemma 22. WLLPO and WLLPO0 are equivalent.

Proof. For each i ∈ {0, 1} set ı̄ = 1− i. Assume first WLLPO, and let

D (n) be a decidable assertion. For each i ∈ {0, 1} set

Ai ≡ ∃ kD(2k + i) ,

for which ¬A0 ∧ ¬A1 is equivalent to ∀n¬D (n). If ¬∀n¬D (n), which is

to say that ¬ (¬A0 ∧ ¬A1), then ¬¬A0 ∨¬¬A1 by WLLPO. If D (n) holds

for at most one n, then ¬Aı̄ follows from Ai, and thus already from ¬¬Ai.

Assume next WLLPO0, and let Ai be a simply existential assertion of

the form

Ai ≡ ∃kDi(k)

where Di(k) is a decidable assertion for each i ∈ {0, 1}. Define decidable

assertions E (n) and F (n) by

E (2k + i) ≡ Di (k)

for every k and each i ∈ {0, 1}, and by

F (n) ≡ E (n) ∧ ∀m < n¬E (m)

4This remark says that the following statements are equivalent:

∀x ∈ R (¬ (x 6 0 ∧ x > 0) ⇒ ¬ (x 6 0) ∨ ¬ (x > 0)) ;

∀x ∈ R (¬ (x 6 0 ∧ x > 0) ⇒ x 6 0 ∨ x > 0) .

Note in this context that x 6 y is a simply universal statement for every pair x, y ∈ R,

for it is the negation of the simply existential statement x > y.
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for every n. Note that F (n) holds for at most one n, and that Ai is equiv-

alent to ∃k E (2k + i). In particular, ¬A0∧¬A1 is equivalent to ∀n¬E (n),

and ∃k F (2k + i) implies Ai. Moreover, ∃nE (n) implies ∃nF (n); whence

∀n¬F (n) implies ∀n¬E (n). Now if ¬ (¬A0 ∧ ¬A1), then ¬∀n¬F (n);

whence if ∀k¬F (2k + i), then ¬∀k¬F (2k + ı̄), and thus ¬¬Aı̄ for each

i ∈ {0, 1}. 2

With LLPO and MP as LLPO0 and MP0, respectively, the following is

evident:

Corollary 23. Each of LLPO and MP implies WLLPO.

Proposition 24. Each of the following statements is equivalent to

WLLPO:

1. ¬ (¬A0 ∧ ¬A1)∧¬ (A0 ∧A1) ⇒ ¬¬A0∨¬¬A1 for all simply existential

assertions A0, A1;

2. ¬ (¬A0 ∧ ¬A1) ∧ ¬ (A0 ∧ A1) ⇒ (¬¬A0 ∨ ¬¬A1) ∧ (¬A1 ∨ ¬A0) for

all simply existential assertions A0, A1;

3. ¬ (¬A0 ∧ ¬A1) ∧ ¬ (A0 ∧ A1) ⇒ ¬A1 ∨ ¬A0 for all simply existential

assertions A0, A1.

Proof. The following are equivalent: ¬ (B ∧ C); B ⇒ ¬C; ¬¬B ⇒ ¬C.

In particular, items 1, 2, and 3 are equivalent. It is obvious that WLLPO

implies item 1, whereas WLLPO as characterised in Lemma 22 is readily

deduced from item 3: apply 3 to Ai ≡ ∃ kD(2k + i) whenever D(n) is a

decidable assertion. 2

In view of its equivalent MP0, it is clear that MP is tantamount to

¬ (¬A0 ∧ ¬A1) ⇒ A0 ∨ A1 for all simply existential assertions A0, A1 .

In particular, MP is equivalent to the statement that, for every tree T ,

¬ (T0 infinite ∧ T1 infinite) ⇒ T0 finite ∨ T1 finite .

Moreover, one can characterise MP just as WLLPO was treated in Propo-

sition 24:

Proposition 25. Each of the following statements is equivalent to MP:
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1. ¬ (¬A0 ∧ ¬A1) ∧ ¬ (A0 ∧ A1) ⇒ A0 ∨ A1 for all simply existential

assertions A0, A1;

2. ¬ (¬A0 ∧ ¬A1)∧¬ (A0 ∧ A1) ⇒ (A0 ∨A1)∧ (¬A1 ∨ ¬A0) for all sim-

ply existential assertions A0, A1.

.6 The weak Kőnig lemma and dependent choice

In [13], WKL and LLPO were shown to be equivalent. While no other

principle was used for deducing LLPO from WKL (see also our Corollary

20), dependent choice was taken for granted for proving the implication

from LLPO to WKL. In [1, 2.2] it was pointed out that LLPO is equivalent

to WKL with respect to a binary choice for simply universal formulas. Also

using dependent choice, a deduction of WKL from 1-Kőnig—which is an

equivalent of LLPO (see Proposition 21 above and the discussion preceding

it)—was given in [4, Footnote 2].

Following [15, 16.5], we next decompose WKL into LLPO and a weak

form of dependent choice. The following equivalence, with LLPO named

Σ0
1-DML, was proved in [15, 16.5]:

WKL ⇔ LLPO +Π0
1-CC

∨ . (5)

The proof of (5) given in [15, 16.5] goes through a third equivalent of a

somewhat topological character and requires some coding. This can be

avoided, as follows, if one uses Π0
1-DC∨ in place of Π0

1-CC
∨. The proofs of

the next two results are unwindings of the proof of [31, Lemma IV.4.4].

Theorem 26. WKL implies Π0
1-DC∨.

Proof. Assume WKL. To prove Π0
1-DC∨ let A0 (u) and A1 (u) be

simply universal for every u: that is, Ai is of the form ∀kDi (u, k) where

Di (u, k) is a decidable assertion for each i ∈ {0, 1}. Set

T =
{

u : ∀n < |u| ∀k < |u|Du(n) (un, k)
}

,

which clearly is a tree. For each α we have

∀m ∀n < m ∀k < mDα(n) (αn, k) ⇔ ∀n∀kDα(n) (αn, k)

Publikacja objęta jest prawem autorskim. Wszelkie prawa zastrzeżone. Kopiowanie i rozpowszechnianie zabronione.  
Publikacja przeznaczona jedynie dla klientów indywidualnych. Zakaz rozpowszechniania i udostępniania serwisach bibliotecznych



80 JOSEF BERGER, HAJIME ISHIHARA, AND PETER SCHUSTER

and thus

∀m (αm ∈ T ) ⇔ ∀nAα(n)(αn) .

In other words, an infinite path in T is nothing but an infinite sequence α

as in the conclusion of DC∨. By WKL it therefore suffices to show that T

is infinite whenever the hypothesis of DC∨ holds. To this end, consider

S =
{

u : ∀n < |u|Au(n) (un)
}

=
{

u : ∀n < |u| ∀kDu(n) (un, k)
}

,

and observe that S ⊆ T . Now if Ai(u), then ui ∈ S; whence if ∀u (A0(u) ∨

A1(u)), then

∀u (u ∈ S ⇒ u0 ∈ S ∨ u1 ∈ S) .

By induction, for every m there is u with |u| = m such that u ∈ S and thus

u ∈ T . 2

Theorem 27. WKL follows from LLPO+Π0
1-DC∨.

Proof. Assume LLPO and Π0
1-DC∨. To deduce WKL, let T be a tree

and set

D (m,u) ≡ ∃v (|v| = m ∧ v ∈ Tu) .

This is a decidable assertion and satisfies

∀mD (m,u) ⇔ Tu infinite

for every u. For each i ∈ {0, 1} we set ı = 1− i and define

Ai (u) ≡ ∃m (¬D (m,ui) ∧D (m,uı)) ,

which is simply existential for every u.

We next show that ∀u¬(A0(u) ∧ A1(u)). Assume that A0(u) ∧ A1(u),

which is to say that there are m0 and m1 with ¬D (m0, u0), D (m0, u1),

¬D (m1, u1), and D (m1, u0). Suppose that m0 > m1. By D (m0, u1) there

is v ∈ Tu1 with |v| = m0, so that for w = vm1 we have w ∈ Tu1 and

|w| = m1 in contradiction to ¬D (m1, u1). The case m0 6 m1 can be

treated in the same way, using first D (m1, u0) and then ¬D (m0, u0).

By LLPO as characterised in Lemma 16 we thus have ∀u (¬A0(u) ∨

¬A1(u)); whence by Π0
1-DC∨ there is α such that ∀n¬Aα(n)(αn). In view

of Lemma 18, it now suffices to show that if T is infinite, then Tαn is infinite
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for this α and every n. We proceed by induction on n, using that Tαn is

infinite precisely when ∀mD (m,αn).

The case n = 0 amounts to T being infinite.

To deduce ∀mD (m,α (n+ 1)) from ∀mD (m,αn), suppose the lat-

ter, and fix an arbitrary m. By the very definition of D (m+ 1, αn) we

have D (m, (αn) 0) or D (m, (αn) 1). If both alternatives hold, then clearly

D (m,α (n+ 1)). If, however, ¬D (m, (αn) i) for some i ∈ {0, 1}, then

D (m, (αn) ı) and Ai (αn); whence α (n) = ı (by the choice of α) and again

D (m,α (n+ 1)). 2

Corollary 28. WKL is equivalent to LLPO+Π0
1-DC∨.

A tree S is a spread if every element of S has an immediate successor

in S: that is,

∀u (u ∈ S ⇒ u0 ∈ S ∨ u1 ∈ S) (6)

or, equivalently,

∀u ((u ∈ S ⇒ u0 ∈ S) ∨ (u ∈ S ⇒ u1 ∈ S)) (7)

(recall that every tree is assumed to be detachable). By induction every

spread is an infinite tree; whence WKL implies a principle that we therefore

call the Weak Spread Lemma (WSL):

WSL Every spread has an infinite path.

For Kleene’s time-honoured discovery [17] of an infinite tree without

infinite path in recursive mathematics, one cannot expect to prove WKL

with constructive means. Its consequence WSL, however, is weak enough

to allow for a constructive proof:

Proposition 29. WSL is provable.

Proof. Since ∆0-DC∨ is provable (Proposition 3), we only need to show

that it implies WSL. To this end, let S be a spread. For each i ∈ {0, 1} set

Ai (u) ≡ (u ∈ S ⇒ ui ∈ S) ,

which is a decidable assertion. By (7) we have ∀u (A0(u) ∨A1(u)); whence

by ∆0-DC∨ there is α with ∀nAα(n)(αn). Induction on n proves that
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∀n (αn ∈ S) for this α. (The case n = 0 is () ∈ S; if αn ∈ S, then

α (n+ 1) ∈ S for α (n+ 1) = (αn)α(n) and Aα(n)(αn).) 2

In this proof we have inferred WSL from ∆0-DC∨. Conversely, ∆0-DC∨

can be deduced from WSL as follows. Let A0 (u) and A1 (u) be decidable

assertions . Set

S =
{

u : ∀k < |u|Au(k) (uk)
}

,

which clearly is a tree. If ∀u (A0(u) ∨ A1(u)), then (6) holds for this S,

because u ∈ S together with Ai(u) implies ui ∈ S for i ∈ {0, 1}. By WSL

there is α with ∀n (αn ∈ S): that is, Aα(k)(αk) for every k < n and all n,

or simply ∀nAα(n)(αn).

.7 Omniscience principles put in a uniform way

As a complement we rephrase in a uniform way all the omniscience princi-

ples but Markov’s that have occurred in this paper. To this end we need

to fix the Law of the Excluded Middle (Γ-LEM) and De Morgan’s Law

(Γ-DML) as restricted to any assertion class Γ:

Γ-LEM C ∨ ¬C for all C ∈ Γ ;

Γ-DML ¬ (C ∧D) ⇒ ¬C ∨ ¬D for all C,D ∈ Γ .

For arbitrary assertion classes Γ, ∆ we consider the following principle:

P (Γ,∆) (C ⇒ D) ⇒ ¬C ∨D for all C ∈ Γ and D ∈ ∆ .

We further write Φ for the class of all assertions. The proof of the next

lemma is left to the reader as an exercise in intuitionistic propositional

logic.

Lemma 30. Let Γ be a class of assertions.

1. The following are equivalent: Γ-LEM; P (Γ,Φ); P (Φ,Γ); P (Γ,Γ).

2. Γ-DML is equivalent to P (Γ,∆) with ∆ = {¬C : C ∈ Γ}.
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Note that LPO, WLPO, LLPO, and WLLPO are nothing but Σ0
1-LEM,

Π0
1-LEM, Σ0

1-DML and Π0
1-DML, respectively. We set

Ξ0
1 = {¬B : B ∈ Π0

1} = {¬¬A : A ∈ Σ0
1} .

Corollary 31.

1. (a) The following are equivalent:

LPO; P
(

Σ0
1,Φ

)

; P
(

Φ,Σ0
1

)

; P
(

Σ0
1,Σ

0
1

)

.

(b) The following are equivalent:

WLPO; P
(

Π0
1,Φ

)

; P
(

Φ,Π0
1

)

; P
(

Π0
1,Π

0
1

)

.

2. (a) LLPO is equivalent to P
(

Σ0
1,Π

0
1

)

.

(b) WLLPO is equivalent to P
(

Π0
1,Ξ

0
1

)

.

Now let Ψ stand for the class of all negated assertions.

Proposition 32. WLPO, P
(

Σ0
1,Ψ

)

, and P
(

Σ0
1,Ξ

0
1

)

are equivalent.

Proof. In view of Ξ0
1 ⊆ Ψ we only have to check that

(i) WLPO implies P
(

Σ0
1,Ψ

)

and (ii) WLPO follows from P
(

Σ0
1,Ξ

0
1

)

.

As for (i), let A ∈ Σ0
1 and F ∈ Φ. Assume that ¬A ∨ ¬¬A. Hence if

A ⇒ ¬F and thus ¬¬A ⇒ ¬F , then ¬A∨¬F . To prove (ii) use A ⇒ ¬¬A

for any A ∈ Σ0
1. 2
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