Tableaux approach for contact logics interpreted over intervals
Choose format
RIS BIB ENDNOTETableaux approach for contact logics interpreted over intervals
Publication date: 12.2023
Reports on Mathematical Logic, 2023, Number 58, pp. 3-13
https://doi.org/10.4467/20842589RM.23.001.18800Authors
Tableaux approach for contact logics interpreted over intervals
Contact logics are modal logic that is developed for reasoning about region-based theories of space. We develope a tableaux approach for contact logics interpreted over intervals (CLIOI) on the reals. For obtaining sound and complete tableaux-based decision procedures, the main technical tool is the semantic tableaux approach. We use intensively the following concepts: tableaux methods, termination of tableaux methods, saturated tableaux, termination theorem, soundness theorem, truth lemma, and completeness theorem.
[1] P. Balbiani, S. Kikot, Sahlqvist theorems for precontact logics, in: Advances in Modal Logic, Volume 9, College Publications 2012, pp. 55-70.
[2] P. Balbiani, T. Tinchev, De_nability and canonicity for Boolean logic with a binary relation, Fundamenta Informaticae 129 (2014), 301-327.
[3] P. Balbiani, T. Tinchev, D. Vakarelov, Modal logics for region-based theories of space, Fundamenta Informaticae 81 (2007), 29-82.
[4] P. Balbiani, T. Tinchev, D. Vakarelov, Dynamic logics of the region-based theory of discrete spaces, Journal of Applied Non-Classical Logics 17(1) (2007), 39-61.
[5] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press 2001.
[6] G. Dimov, D. Vakarelov, Contact algebras and region-based theory of space: a proximity approach - I, Fundamenta Informaticae 74 (2006) 209-249.
[7] I. Düntsch, M. Winter, A representation theorem for Boolean contact algebras, Theoretical Computer Science 347 (2005) 498-512.
[8] M. Fitting, Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic 13 (1972) 237-247.
[9] A. Galton, The mereotopology of discrete spaces, in Spatial Information Theory, Proceedings of the International Conference COSIT'99, Springer 1999, pp. 251-266.
[10] A. Galton, Qualitative Spatial Change, Oxford University Press 2000.
[11] R. Kontchakov, I. Pratt-Hartmann, F. Wolter, M. Zakharyaschev, Spatial logics with connectedness predicates, Logical Methods in Computer Science 6 (2010) 1-43.
[12] D. Vakarelov, Region-based theory of space: algebras of regions, representation theory, and logics, in: Mathematical Problems from Applied Logic. Logics for the XXIst Century. II, Springer 2007, pp. 267-348.
[13] J. Van Benthem, A note on modal formulas and relational properties, Journal of Symbolic Logic 40 (1975) 85-88.
[14] F. Wolter, M. Zakharyaschev, Spatial representation and reasoning in RCC-8 with Boolean region terms, in: Proceedings of the 14th European Conference on Artificial Intelligence, IOS Press 2000, pp. 244-248.
Information: Reports on Mathematical Logic, 2023, Number 58, pp. 3-13
Article type: Original article
Istanbul Nişantaşı University
Turkey
Published at: 12.2023
Article status: Open
Licence: CC BY
Percentage share of authors:
Classification number:
Article corrections:
-Publication languages:
EnglishView count: 347
Number of downloads: 253