[1] E. Bishop [1970], Mathematics as a numerical language, in: Intuitionism and Proof Theory, North-Holland, Amsterdam and New York, 1970, pp. 53–71.
[2] J. Boniface, N. Schappacher [2001], Sur le concept de nombre en math´ematique, Cours in´edit de Leopold Kronecker `a Berlin 1891 (with the integral German text), Revue d’histoire des math´ematiques 7 (2001), pp. 207–275.
[3] J. Dieudonn´e [1974], Cours de g´eom´etrie alg´ebrique 1, PUF, Paris, 1974.
[4] H.M. Edwards [1990], Divisor Theory, Birkh¨auser, Boston-Basel-Stuttgart, 1990.
[5] H.M. Edwards [1992], Kronecker’s Arithmetic Theory of Algebraic Quantities, Jahresberichte der Deutschen Mathematiker Vereinigung 94:3 (1992), pp. 130–139.
[6] G. Faltings, G. W¨ustholz [1984], Rational Points, Vieweg Verlag, BraunschweigWiesbaden,1984.
[7] G. Frege, Grundgesetze der Arithmetik, H. Pohle, Jena, 1893.
[8] Y. Gauthier [1983], Le constructivisme de Herbrand (Abstract), The Journal of Symbolic Logic 48:1230 (1983).
[9] Y. Gauthier [1989], Finite Arithmetic with Infinite Descent, Dialectica 43:4 (1989), pp. 329–337.
[10] Y. Gauthier [1991], De la logique interne. Collection ”Mathesis”, Vrin, Paris, 1991.
[11] Y. Gauthier [1994], Hilbert and the Internal Logic of Mathematics, Synthese101 (1994), pp. 1–14.
[12] Y. Gauthier [2002], Internal Logic. Foundations of Mathematics from Kronecker to Hilbert, Kluwer, Synthese Library, Dordrecht/Boston/London, 2002.
[13] Y. Gauthier [2007], The Notion of Outer Consistency from Hilbert to G¨odel (Abstract), Bulletin of Symbolic Logic 13:1 (2007), pp. 136–137.
[14] Y. Gauthier [2009], Classical Function Theory and Applied Proof Theory, International Journal of Pure and Applied Mathematics 56:2 (2009), pp. 223–233.
[15] Y. Gauthier [2010], Logique arithm´etique. L’arithm´etisation de la logique, Qu´ebec, PUL, 2010.
[16] Y. Gauthier [2011], Hilbert Programme and Applied Proof Theory, Logique et Analyse 54:213 (2011), pp. 49–68.
[17] J. Giraud [1964], M´ethode de la descente, M´emoire 2 de la Soci´et´e Math´ematique de France, 1964.
[18] K. G¨odel [1958], ¨Uber eine noch nicht ben¨utze Erweiterung des finiten Standpunktes, Dialectica 12 (1958), pp. 230–237.
[19] A. Grothendieck [1960], Technique de descente et th´eor`emes d’existence en g´ eom´etrie alg´ebrique I, G´en´eralit´es. Descente par morphismes fid`element plats, S´eminaire Bourbaki, 5 (1958-1960) Exp. No. 90, 29 p.
[20] A. Grothendieck, M. Raynaud [1971], Revˆetements ´etales et Groupe fondamental (SGA1), S´eminaire de G´eom´etrie alg´ebrique du Bois-Marie 1960-1961. Lecture Notes in Mathematics, Springer-Verlag, 1971.
[21] M. Hallett [1995], Hilbert and Logic, in: Qu´ebec Studies in the Philosophy of Science, Part 1, M. Marion and R.S. Cohen, eds., Dordrecht, Kluwer, 1995, pp. 135–187.
[22] J. Herbrand [1968], ´Ecrits logiques, PUF, Paris, 1968.
[23] D. Hilbert [1890], ¨Uber die Theorie der algebraischen Formen, in: Hilbert [1935], vol. III, pp. 199–257.
[24] D. Hilbert [1893], ¨Uber die vollen Invariantensysteme, in: Hilbert [1935], vol. II, pp. 287–365.
[25] D. Hilbert [1905], ¨Uber die Grundlagen der Logik und der Arithmetik, in: Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg, Krazer (ed.) Leipzig : B. G. Teubner, 1905 : 1904, pp. 174–185.
[26] D. Hilbert [1926], ¨Uber das Unendliche, Mathematische Annalen 95 (1926), pp.161–190.
[27] D. Hilbert [1930], Die Grundlegung der elementaren Zahlenlehre, Mathematische Annalen 104 (1930), pp. 485–494.
[28] D. Hilbert [1935], Gesammelte Abhandlungen 3 vols, Chelsea, New-York, 1935.
[29] A. Hurwitz [1895], Mathematische Werke, Vol. 2, pp. 198–207.
[30] U. Kohlenbach [2008], Applied Proof Theory. Proof Interpretations and their Use in Mathematics, Springer-Verlag, Berlin - Heidelberg, 2008.
[31] L. Kronecker [1889], Werke K. Hensel (ed.), 5 vols. Teubner, Leipzig, 1889.
[32] L. Kronecker [1882], Grundz¨uge einer arithmetischen Theorie der algebraischen Gr¨ossen, Werke, vol. II, pp. 245–387.
[33] L. Kronecker [1883], Zur Theorie der Formen h¨oherer Stufen, Werke, vol. II, pp. 419–424.
[34] L. Kronecker [1884], ¨Uber einige Anwendungen der Modulsysteme auf elementare algebraische Fragen, Werke, vol. III, pp. 47–208.
[35] L. Kronecker [1886], Zur Theorie der elliptischen Funktionen, Werke, vol. IV, pp. 309–318.
[36] L. Kronecker [1887a], Ein Fundamentalsatz der allgemeinen Arithmetik, Werke, vol. II, pp. 211–240.
[37] L. Kronecker [1887b], ¨Uber den Zahlbegriff, Werke, Vol. III, pp. 251–274.
[38] L. Kronecker [1901], Vorlesungen ¨uber Zahlentheorie, Vol. I, K. Hensel (ed.), Teubner, Leipzig, 1901.
[39] L. Lafforgue [2002], Chtoukas de Drinfeld et correspondance de Langlands, Inventiones Mathematicae, 197:1 (2002), pp. 11–242.
[40] R.P. Langlands [1976], Some Contemporary Problems with Origins in the Jugendtraum, in: Mathematical Developments arising from Hilbert’s problems, American Mathematical Society, Providence, Rhode Island, 1976, pp. 401–418.
[41] S. Lipschitz [1986], Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker, Weierstrass, Vieweg Verlag, Braunschweig, 1986.
[42] J. Lurie [2009], Higher Topos Theory, Annals of Mathematics Studies, Princeton University Press, Princeton, 2009.
[43] M. Marion [2009], Kronecker’s Safe Haven of Real Mathematics, in: Quebec Studies in the Philosophy of Science I, M. Marion and R.S. Cohen (eds.) Kluwer, Boston, 2009, pp. 189–215.
[44] J. Molk [1885], Sur une notion qui comprend celle de divisibilit´e et sur la th´eorie g´ en´erale de l’´elimination, Acta Mathematica 6 (1885), pp. 1–166.
[45] H. Poincar´e [1951], Sur les propri´et´es arithm´etiques des courbes alg´ebriques, in: Œuvres, vol. II, pp. 483–550.
[46] B. Russell [1919], Introduction to Mathematical Philosophy, Allen and Unwin, London UK, 1919.
[47] J.-P. Serre [2009], How to use finite fields for problems concerning infinite fields, Proc. Conf. Marseille-Luminy 2007, Contemporary Math. Series, AMS, pp. 1–12.
[48] W. Sieg [1999], Hilbert’s Programs : 1917-1922, Bulletin of Symbolic Logic 5:1 (1999), pp. 1–44.
[49] L. Van den Dries [1988], Alfred Tarski’s Elimination Theory for Real Closed Fields, The Journal of Symbolic Logic 53 (1988), pp. 7–19.
[50] H.S. Vandiver [1936], Constructive Derivation of the Decomposition-Field of a Polynomial, Annals of Mathematics 37:1 (1936), pp. 1–6.
[51] V. Voevodsky [2010], Univalent Foundations Project, (A modified version of an NSF grant application). October 1, 2010.
[52] A. Weil [1976], Elliptic Functions according to Eisenstein and Kronecker, SpringerVerlag Berlin, 1976.
[53] A. Weil [1979a], Oeuvres scientifiques, Collected Papers, Vol. I, Springer-Verlag, New York, 1979.
[54] A. Weil [1979b], Number Theory and Algebraic Geometry, in: Weil [1979a], Vol. III, pp. 442–452.
[55] A. Weil [1979c], L’arithm´etique sur les courbes alg´ebriques, in: Weil [1979a], Vol. I, pp. 11–45.
[56] A. Weil [1984], Number Theory. An Approach through History. From Hammurabi to Legendre, Birkha¨user. Boston-Basel-Berlin, 1984.
[57] H. Weyl [1940], Algebraic Theory of Numbers, Princeton University Press, Princeton, New Jersey, 1940.