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KRONECKER IN CONTEMPORARY

MATHEMATICS
GENERAL ARITHMETIC AS A
FOUNDATIONAL PROGRAMME

A b s t r a c t. Kronecker called his programme of arithmetiza-

tion “General Arithmetic” (Allgemeine Arithmetik). In his view,

arithmetic is the building block of the whole edifice of mathemat-

ics. The aim of this paper is to show that Kronecker’s arithmetical

philosophy and mathematical practice have exerted a permanent

influence on a long tradition of mathematicians from Hilbert to

Weil, Grothendieck and Langlands. The conclusion hints at a

constructivist finitist stance in contemporary mathematical logic,

especially proof theory, beyond Hilbert’s programme of finitist

foundations which can be seen as the continuation of Kronecker’s

arithmetization programme by metamathematical or logical means.

It is finally argued that the introduction of higher-degree polyno-

mials by Kronecker inspired Hilbert’s notion of functionals, which

in turn influenced Gödel’s functional Dialectica interpretation for

his intuitionistic proof of the consistency of arithmetic.
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.1 Introduction. Arithmetical philosophy

I understand arithmetical philosophy on the model of Russell’s mathemat-

ical philosophy as an internal examination of arithmetical concepts – in

the case of Russell, the internal examination of logical and general mathe-

matical concepts (Russell [1919]). The two texts “On the concept of num-

ber” (Kronecker [1987b]) and his last lectures in Berlin “On the concept

of number in mathematics” (see the German text edited by Boniface and

Schappacher [2001]) summarize Kronecker’s conception of number or whole

number (integer). Kronecker shares with Gauss the idea that the concept of

number is in the mind or a priori while space is a property or relation in the

external world; geometry and mechanics do not belong to the realm of pure

mathematics since they have to represent and picture natural processes by

using the concept of continuity whereas number inhabits the discrete uni-

verse of ordinals. Cardinals are invariants for the counting of groups of

objects and equivalence is an intensional relation. The concrete combina-

torial procedures (Verfahren) of addition, multiplication, congruence, etc.

join with the general concepts of forms or homogeneous polynomials and

their properties in the process of arithmetization.

There is a Kantian background to Kronecker’s conception of number

and Kronecker could not help but mock the philosophy of mathematics of

post-Kantian philosophers like Schelling and Hegel1. Philosophical defini-

tions of number are useless and one must start with the basic facts of a

science (arithmetic here) and then fully elaborate the conceptual determi-

nations (Begriffsbestimmungen) of the subject matter. In that sense, pure

mathematics was for Kronecker an experimental science in the construc-

tion of concepts in accord with Kant’s dictum “Mathematics constructs

concepts, philosophy analyzes them”. Beyond this motto, Kronecker has

hoped for a thorough arithmetization of mathematics, especially algebra;

arithmetization of algebra has been the main task of his mathematical life

as Kronecker confesses in a letter to Lipschitz ([1986] : 181-182)

On that occasion [the publication of his 1882 paper], I have

1Kronecker does not reject all of Hegel and he quotes him approvingly on certain oc-

casions, but he has not taken Hegel’s conception of number seriously. One should mention

however that contemporary mathematicians, like Lawvere in category theory, logicians

in non-standard analysis and philosophers of logic (dialetheism and paraconsistent logic)

have tried to make good of some of Hegel’s ideas.
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found the long-sought foundations of my entire theory of forms

which somehow brings to completion “the arithmetization of al-

gebra” which has been the goal of my whole mathematical life;

it is evident to me that at the same time arithmetic cannot dis-

pense with the “association of forms” and that without them,

it can only go astray in meandering thoughts (Gedankengespin-

ste) as is the case with Dedekind, where the true nature of the

matter is obscured rather than illuminated.

(my translation)

Beyond the polemical tone, one sees the central role of his 1882 formulation

and it is especially in that connection that Hermann Weyl has asserted the

superiority of Kronecker’s algorithmic approach in algebraic number theory

with his domains of rationality (Rationalitätsbereiche) over Dedekind’s con-

cept of field (Körper). Association of forms means in that context homoge-

neous polynomials with integer coefficients and indeterminates, the central

topic of Kronecker’s major work (1882) “Die Grundzüge einer arithmetis-

chen Theorie der algebraischen Grössen” (“On the Fundamental Features

of an Arithmetical Theory of Algebraic Quantities”).

As far as analysis is concerned, Kronecker has sought arithmetical in-

variants in the theory of elliptic functions and Weil has granted him the

status of the pioneer of algebraic-arithmetic geometry. In those lectures of

1891, Kronecker comes back to the approximation method which he calls lo-

calization (Isolierung) of real roots of an algebraic equation in well-defined

intervals of values for algebraic equalities and inequalities. In his criticism

of Bolzano’s theorem on intermediate values, Kronecker villifies Bolzano

for having used the crudest means (mit den rohesten Mitteln) to obtain an

analytical result which cannot be applied to the roots of an entire function.

He also mentions Dirichlet’s celebrated analytical proof on the infinity of

primes in any arithmetical progression which he has discussed in his Vor-

lesungen über Zahlentheorie (Kronecker [1901]). As K. Hensel puts it in the

Preface, the methods of arithmetic and algebra rest on a finite number of

steps, (eine endliche Anzahl von Versuchen), while analysis is built upon

the concepts of continuity and limit. Here Kronecker tackles Dirichlet’s

transcendental proof on the infinity of primes in any arithmetical progres-

sion and introduces an arithmetical extension on a finite interval (μ... ν)
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for two integers μ, ν where one must find at least one prime of the form

hm + r for m and r with no common divisors. Kronecker says that it is one

case among others where arithmetic can do more than analysis and go be-

yond analytical methods. Dirichlet had used infinitesimal analysis (infinite

series) in his proof and had confessed that what was still lacking were the

right principles or conditions under which transcendental relations between

indeterminate integers could be removed.

Kronecker defines arithmetic as pure mathematics free from space and

time (see Boniface and Shappacher [2001] : 227) and pays tribute to Gauss

for having defined the true nature of arithmetic with the introduction of

the concepts of composition (and decomposition into roots) of algebraic

systems, in this case quadratic forms (ibid., 262), and he credits him also

with the introduction of the notion of indeterminates (indeterminatae). In

his opposition to the analytical concepts of continuity and limit, Kronecker

is echoing Gauss who in a 1831 letter to Schumacher did denounce the use

of completed infinite quantities (vollendete unendliche Grösse) with the

maxim “The infinite is only a manner of speech”, (Das Unendliche ist nur

eine Façon de parler). Kronecker could have made that maxim his own,

but Leibniz had already qualified those infinitesimal quantities as useful

fictions in the calculus. Kronecker would have been surprised though, had

he studied more seriously Hegel’s conception of the mathematical infinite,

to learn that Hegel espoused the Leibnizian-Gaussian idea of a differential

calculus dealing with the relative character of quantities rather than with

the absolute limits of an infinite iterative process. In any case, Kronecker’s

view of the matter is in total agreement with Gauss’ arithmetical philoso-

phy and it is no surprise this time if he has opposed Cantor’s practice of

transfinite arithmetic which he has discarded as mathematical sophistry.

A few important mathematicians have emphasized Kronecker’s influ-

ence on contemporary mathematics : among them, first and foremost Weil

([1976], [1979]) has stressed the fact that Kronecker is the founder of mod-

ern algebraic geometry and Edwards [1990], [1992] after Weyl [1940] has

insisted on Kronecker’s pioneering work in algebraic number theory (divisor

theory). Bishop [1970] has admitted in his work on the computational (or

numerical) content of classical analysis that his enterprise was more in line

with Kronecker than with Brouwer. Brouwer himself paid tribute to Kro-

necker – as did Poincaré and Hadamard – for his contribution to the fixed

point theorems (see Gauthier [2009]). Poincaré for one among many others
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like Skolem or van der Waerden repeated Hensel’s catch phrase in the Pref-

ace of Kronecker [1901] “a finite number of trials” (eine endliche Anzahl

von Versuchen) to characterize Kronecker’s finitist stand; Poincaré used the

phrase “finite number of hypotheses” (nombre fini d’hypothèses) in his work

on the arithmetical properties of algebraic curves (Poincaré [1951]) which

was the starting point of contemporary algebraic geometry, from Mordell

to Weil and Faltings. I want to concentrate in the following on contempo-

rary algebraic-arithmetic geometry and the two main programmes in the

field, Langlands’ programme and Grothendieck’s programme as they are

motivated to a large extent by Weil’s own work in algebraic geometry (see

Weil [1979a]). Both programmes invoke Kronecker’s dream of youth, his

theory of forms (homogeneous polynomials) and modular systems which

consist in sums and products of polynomials in a general divisor theory

that was to become a theory of moduli spaces by successive generalisations

and enlargments. In my view, these programmes share some measure of

Kronecker’s arithmetical philosophy which sees arithmetic as the building

block of mathematics.

.2 Grothendieck’s Programme

In SGA 1, that is Séminaire de Géométrie algébrique du Bois-Marie of 1961,

Grothendieck [1971] starts his inquiry into what will be called Grothendieck’s

programme of the new foundation of algebraic geometry by taking a Kro-

neckerian point of view :

The present volume introduces the foundations of a theory of

the fundamental group in algebraic geometry from a “Kroneck-

erian” point of view which allows to deal on the same footing

with an algebraic variety (of current usage) and with the ring

of integers over a number field, for example. This point of view

is best expressed in the language of schemes [. . . ].

(my translation)

The Kroneckerian point of view implies that function fields are the ana-

logue of number fields in the sense that an algebraic function field in one
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variable over the field of rational numbers Q is an extension of finite de-

gree of the ring of polynomials in one indeterminate Q[x]; function fields

behave in Q[x] as algebraic number fields in Z, the ring of integers, while

the field of rational functions is the field of quotients Q(x) of Q[x]. Kro-

necker [1883] had sketched in his paper “On the Theory of Higher-Level

Forms” (Zur Theorie der Formen höherer Stufen) a notion of content or in-

clusion (Enthalten-Sein) for forms or homogeneous polynomials with sums

and products of rational functions in a domain of rationality – Rationalitäts-

bereich is the term used by Kronecker instead of Dedekind’s term Körper,

corps in French and field in English (see Gauthier [2002]). The notion of

Enthalten-Sein or “being contained in” is not perfectly clear in Kronecker

[1882]. Molk [1885] and Vandiver [1936] have shown how to give a meaning

to Kronecker’s construction. Molk had insisted on the divisibility theory of

polynomials and Vandiver has exhibited an explicit construction of decom-

position or devolution (as opposed to convolution) for polynomial ideals.

I give here a brief description of Kronecker’s construction of these higher-

level forms – Kronecker’s terminology is in various contexts Stufe, Rang,

Ordnung or even Dimension. Kronecker had outlined [1882] the most gen-

eral setting for the decomposition (Zerlegung) of polynomial content. I

propose here my own interpretation in terms of the convolution (Cauchy)

product for polynomials. The general form of the convolution product of

two polynomials (forms) encloses (includes) or contains higher-order forms

and the substitution-elimination method enables one to remain within the

confines of integral forms. Let us start with the convolution or Cauchy

product of two polynomials

f · g = (
∑
m

fmxm) · (∑
n
gnx

n) = (
∑
m

∑
n
fmgnx

m+n)

with addition of their coefficients m and n. In his major work, Kronecker

([1882] : 343) states that a form M is contained in another form M′ when
the coefficients of the one are contained in the second. He then goes on to

formulate propositions on the equivalence of forms like :

Linear homogeneous forms that are equivalent can be trans-

formed into one another through substitution with integer co-

efficients.

(Proposition X in Kronecker [1882] : 345.)
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and

Two forms are absolutely equivalent, when they contain each

other.

(Proposition X0 in Kronecker [1882] : 351.)

Kronecker states then what he calls a principal result (Hauptresultat),

Every entire algebraic form in the sense of the absolute equiv-

alence of Proposition X0 is representable as a product of irre-

ducible (prime) forms in a unique way.

(Proposition XIII0 in Kronecker [1882] : 352.)

Here Kronecker declares that this result shows that the association of entire

algebraic forms by the method of indeterminate coefficients conserves the

conceptual determinations of the elementary laws (of arithmetic) in the

passage from the rational domain or the domain of entire rational functions

to the domain of algebraic functions. But Kronecker is not satisfied and

comes back the following year (Kronecker [1883] : 422) to the question and

introduces the product

m∑
h=0

MhU
h ·

m+1∑
i=1

Mm+2Um+1

(where M = M0,M1,M2, . . . ,Mn+1 are integral quantities of successive

domains of rationality R and the U ’s are indeterminates) which defines a

form of power r containing the product of forms

r∏
h

∑
k

M ′
kVhk

which he maintains is still more general than the 1882 formulation. “To be

contained” here means only that the polynomials in the domains of ratio-

nality are included or contained in a higher rank (order) of their coefficients.

A modular system will then decompose this construction into irreducible

polynomials. Hence, the notions of inclusion and of equivalence (recipro-

cal inclusion) of forms are valid generally, i.e. for both forms and divisors
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and factor decomposition is a descending technique perfectly similar to the

division algorithm for integers or the Euclidean algorithm for polynomials.

Dedekind’s Prague Theorem is in the continuity of Kronecker’s construc-

tion; it says2 that if all coefficients of the product fg of two polynomials f

and g (in one indeterminate) are algebraic, then the product of any coeffi-

cient of f and any coefficient of g is an algebraic integer.

For this unique decomposition of polynomials, descent is used to arrive

at irreducible polynomials, much in the same way as in Euclid’s proof of the

divisibility of composite numbers by primes. Now the fact (Gauss lemma)

that the product of two primitive polynomials (with the g.c.d. of their

respective coefficients = 1) is primitive can also be had with infinite descent

and reductio ad absurdum. From this fact combined with the fact that there

is unique decomposition into irreducible (prime) polynomials, we obtain

unique prime factorization. Kronecker’s version of unique decomposition

rests on the formula quoted above

r∏
h=1

MkUhk

and ∏
i=j+k

ci =
∑

j+k=i

ajbk

with j = (0, ..., m) and k = (0, ..., n). We shall read it in the form

– remembering that ap−1 ≡ 1(mod p) from a divisibility point of view –

m+n∏
i=1

(1 + cixi) =
m+n∑
i=0

(cix
m+n−1) =

∑
m+n=1

(ambn).

Kronecker’s generalization uses the convolution product for polynomials∑
h

MhU
h ·∑

i
Mm+iU

i−1 =
∑
k

M ′
kU

k

where k = 0, 1, ...,n and the equation defines an n + 1 order system con-

taining n order forms. I would call those forms polynomial functionals;

they are the entire integer-valued functions that fill up the sphere of forms

(Kronecker [1883] : 423). Here the M ’s are integral forms and the U ’s

indeterminates so that the product mentioned above

2See Kronecker ([1883] : 421). Edwards ([1990 : 2] rightly suggests that Dedekind’s

Prague Theorem – a generalization of Gauss Lemma to the algebraic case – is but a

consequence of Kronecker’s result.
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∏
h

∑
k

Mk′Uhk

is “contained” in the resulting form and the product can then be expressed

as

∑
k

M ′
kU

k = (MkMm+1)
k+(MkMm+1)

k−1+(MkMm+1)
k−2+...+(MkMm+1)

in the decreasing order of the rank k of the polynomial sum. This linear

combination obtained by the convolution product and the finite descent on

powers shows simply that integral rational forms generate integral algebraic

forms, i.e. algebraic integers. What we find in the 1883 text is simply

a generalisation of Kronecker’s 1882 theory of forms which encompasses

both the theory of modular systems and the theory of polynomials. The

equivalence principle for forms stated in 1882 is valid in full generality

and the generalised notion of content or being contained in (Enthalten-

sein) shows that in the construction (Bildung) of entire or integral functions

the sphere of forms finds its fullest expression (Kronecker[1883] : 423). This

is not to say that Kronecker has fully realized his dream, only that he has

conceived of an ambitious project that could possibly be fulfilled by a long

list of successors.

Kronecker ([1883] : 422) refers explicitely to his 1882 text for the nar-

rower concept of content in his text. As a matter of fact, Hurwitz (see

[1895], vol. 2 : 198-207) obtained a proof of Kronecker’s theorem by us-

ing Lagrange’s interpolation (rather than Cauchy’s convolution product)

and the Euclidean algorithm which is also the original form of the descent

method – Hurwitz speaks of the elimination of composite powers. Here

again the ring of polynomials is the proper arena (with the largest area!)

for Kronecker’s general arithmetic of forms and their divisors. It is at

this point that Dieudonné ([1974], vol.1 : 200) speaks of Kronecker’s old

dream (vieux rêve) as being realized by Grothendieck’s notion of scheme

(schéma). It is of course Kronecker’s Jugendtraum that Dieudonné evokes

here and he describes Kronecker’s ambitious project as encompassing both

number theory and algebraic geometry in the polynomial theory of mod-

ular systems (see Dieudonné [1974] : vol. 1, 59-61). Kronecker’s forms

or homogeneous polynomials become algebraic varieties and his notion of

level (Stufe) means dimension or codimension in algebraic geometry – Kro-

necker’s dream of youth in that context is translated into Hilbert’s 12th
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problem on the extension of Kronecker’s proposition on Abelian fields in

an arbitrary algebraic domain of rationality.

The decomposition process or division algorithm is thus a descent to

irreducible (linear) polynomials and Kronecker ([1884] : 336) in a later

paper “On Some Uses of Modular Systems in Elementary Algebraic Ques-

tions” (Über einige Anwendungen der Modulsysteme auf elementare alge-

braische Fragen) makes it clear that his theory of higher forms or modular

systems makes it unnecessary to have recourse to infinite series as in for-

mal power series and that finite series, that is polynomials, suffice or are up

to the task of extracting the arithmetic-algebraic content of general arith-

metic, as Kronecker says. The content in question amounts to substructures

and extensions in model-theoretic terms and the function field appears then

naturally as an extension of the number field, but Kronecker’s way was algo-

rithmic in the combinatorial build-up of the hierarchy of forms. As Edwards

points out in his Divisor Theory [1990], such extensions of finite degree are

not couched in an algebraic closed field in modern usage and Kronecker

avoids the transfinite setting by simply introducing new algebraic numbers

to Q in a finite process of adjunction (see Gauthier [2002] : chap. 4 for

details). Weil has insisted on the deep connection between function fields

and number fields without avoiding entirely the transfinite construction and

Grothendieck in his pursuit of Weil’s conjectures has enlarged the geomet-

ric landscape with his notion of scheme. What we call today an algebraic

variety was essentially a divisor sytem or a modular system (Modulsystem)

for the polynomial ring in the hands of Kronecker; when it changes hands it

becomes a locally ringed space in the functorial category-theoretic style of

Grothendieck. Here functors transport arrows (functions) and their objects

by making room for the larger topological or toposical (topos-theoretic)

structures. I would call this approach structuralist as it is in line with the

Bourbaki School to contrast it with the constructivist approach of Kroneck-

erian ascent and one could consider algebraic geometry à la Grothendieck

as a tension between two mother-structures, algebraic structures and topo-

logical structures, as defined by Bourbaki. Grothendieck [1961] in any case

refers indifferently to descent techniques or construction techniques in his

1958-1961 exposés in the Bourbaki Seminar. Algebraic geometry could be

seen more accurately as pulled between a purely arithmetical internal logic

and an external geometrical logic. I would put Langlands’ programme more

on the side of arithmetic geometry with Grothendieck’s programme on the
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other, geometric side of algebraic geometry. In Langlands’ case as we shall

see, the “principle of functoriality” puts the emphasis on the correspon-

dence between arithmetic objects and analytic data while for Grothendieck

the question is : is algebraic geometry more algebraic than geometric? For

example in Grothendieck’s theory of motives (motifs), correspondences are

sought between arithmetic objects and algebraic-geometric structures. One

answer could be found, I believe, in the massive work of Jacob Lurie on

Higher Topos Theory [2009]. Lurie’s work is certainly of Grothendieck’s

lineage and I would like to concentrate my short analysis of the matter in

the chapter “Descent versus Hyperdescent” of Lurie’s treatise.

.3 Descent

Descent is a central topic in algebraic geometry. It is of course of arithmetic

inspiration having its origin in Fermat’s notion of infinite or indefinite de-

scent. It has been practised in number theory by Fermat, Euler, Gauss,

Lagrange, Legendre, Dirichlet, Kummer and Kronecker (see [1901]) and

in modern times by Hilbert, Poincaré, Mordell, Weil, Faltings, Serre and

many others. Since I have explored infinite descent extensively elsewhere

(see Gauthier [2002] and [2010]), I shall simply quote André Weil’s version

:

Infinite descent à la Fermat depends ordinarily upon no more

than the following simple observation : if the product αβ of two

ordinary integers (resp. two integers in an algebraic number-

field) is equal to an m-th power, and if the g.c.d. of α and β

can take its values only in a given finite set of integers (resp. of

ideals), then both α and β are m-th powers, up to factors which

take their values only in some assignable finite set. For ordi-

nary integers this is obvious; it is so for algebraic number-fields

provided one takes for granted the finiteness of the number of

ideal-classes and Dirichlet’s theorem about units. In the case of

a quadratic number-field Q(
√
N), this can be replaced by equiv-

alent statements about binary quadratic forms of discriminant

N.

(see Weil [1983] : 335-336)
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For algebraic number theory, descent in Weil’s sense boils down via a

height function on integers m ≥ 2 to the finite quotient group A/mA of

rational points of an Abelian group A, which is then said to be finitely

generated: this is the starting point of Galois cohomology inaugurated by

Weil. I would designate this form of infinite descent as a general Euclidean

algorithm for divisor theory and Kronecker [1882] has used it accordingly

in his theory of modular systems where we have an extensive treatment

of the elimination or decomposition of forms into irreducible factors. For

model theory, Tarski’s theory of quantifier elimination has its source in

Kronecker’s elimination theory following van den Dries [1988]. For algebraic

geometry (and Galois cohomology), it should be noted that Kronecker had

defined a generalized Galois principle which consists essentially to move

from the group of substitutions for algebraic equations to the permutation

group of a higher invariant theory, that is for entire functions with integer

coefficients and n indeterminates (see Kronecker [1882] : chap. 11, 284-285)

: these are the forms for which Kronecker claims that it is the most complete

arithmetical theory of algebraic quantities (ibid, 377). His principal result

quoted above, as Kronecker emphasizes, is the analogue of the fundamental

theorem of arithmetic for algebraic forms :

Any entire algebraic form is representable as a product of irre-

ducible (prime) forms in a canonical way.

(my translation of [1882] : 352)

This amounts in contemporary elementary algebra to the fact that the

domain F [x] of polynomials is a principal ideal domain, a major ingredient

of divisor theory. The Noetherian chain condition on ideals is ascending and

descending on the field of F (x) of rational functions. The direct method

of calculating the g.c.d. here is the Euclidean algorithm or in the more

general algebraic-geometric situations, the descent method à la Fermat

described by Weil above and which I have characterized as a generalized

Euclidean algorithm. This is one of the junction points between number

theory and algebraic geometry that Weil [1979b] has stressed and it is here

that Weil and Grothendieck would agree, despite Weil’s reluctance to admit

the category-theoretical language. Even the recalcitrant Dieudonné who

didn’t have much taste for constructive mathematics had recognized that
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Grothendieck’s notion of scheme was genetically linked to theModulsysteme

or modular systems of Kronecker.

If classical infinite descent relied on the well-ordering of the natural

numbers to prove impossibility results by reductio ad absurdum for exam-

ple, it consisted also in reduction procedures for Diophantine equations of

finite degree with possibly infinite solutions, a kind of positive descent. It

is also a kind of positive descent that Weil defines and Serre as well as

Grothendieck have named that descent “descending induction” or “recur-

rent induction”– Poincaré preferred the term “récurrence” to “induction”.

It is Weil again who has introduced the practice of infinite descent for field

extensions in the theory of Galois cohomology. Cohomology as the com-

putational dual of homology harbours various devices and descent appears

under many disguises such as exact sequences, descending sequences, re-

currence hypothesis, finiteness conditions, etc. Noetherian rings and spaces

have an intrinsic descent (chain) condition. Grothendieck has even invented

the term “dévissage” to express the unscrewing of the sequence of integers

inherent to the descent method. But in his categorical idiom, descent con-

sists in representing the algebraic structures – on a Noetherian frame most

of the time – in the geometric universe or universes by arrows pointing

to the objects of the ground level (the discrete topology), thus collecting

the descent data from above and glueing them below. This is more or less

a pictorial or intuitive approach, as Giraud [1964] admits in his treatise

on Grothendieck’s theory of descent. For a recent example of the use of

descending induction in a somewhat more constructive style, one should

consult Serre’s paper [2009] “How to use finite fields for problems concern-

ing infinite fields”, a most elegant illustration of a simple descent technique.

For an another illustration, Faltings had built his proof of the Mordell con-

jecture – on the finite number of rational points of a rational algebraic

curve (of genus greater than one) – on moduli spaces which are geometric

spaces endowed with a Noetherian algebraic structure and finite coverings

(see Faltings [1984]). The method of descent still works by climbing down

the ladder of natural numbers from a given n or the sparser rungs of the

prime numbers from a given p or l (for l -cohomology). The same is true

for the ring of integers and the ring of polynomials which are Noetherian,

as are finite fields. Geometric descent with functors and morphisms must

count on the algebraic-arithmetic descent to recover the ground field or

the polynomial ring which is the fundamental arena of algebraic geometry.
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A nice illustration of this fact can be found in Jacob Lurie’s voluminous

Higher Topos Theory.

Infinite categories or infinity-categories (∞-categories or ω-categories)

along with n-categories are new objects of higher category theory and topos

theory. For brevity’s sake, let us say that n-categories for n finite become

infinite when n = ∞. The same holds for topoi and Grothendieck descent

applies to n-topoi, where it is the usual descent à la Fermat as introduced

by Weil. Recall that Serre defines “descending induction” as acting on two

( positive ) integers m and N with m > N descending to m = N (see [2009]

:10). What happens in the case of infinite topoi above and beyond coho-

mology and cobordism for infinite categories? The situation becomes more

complicated with hyperdescent, as Lurie admits ([2009] : 67) and one has to

introduce the set-theoretic machinery of transfinite iteration (induction) on

limit ordinals that reside in the universe of a regular uncountable cardinal;

descent consists then in a transfinite sequence of downward-closed subsets

(ibid., p. 800) in order to decompose them into pieces before glueing them

in a suitable topological space. In the same Grothendieck’s lineage or line

of thought, V. Voevodsky [2010] is proposing geometric (non set-theoretic)

univalent foundations for homotopy types – with equivalence classes of con-

tinuous maps between topological spaces – for an axiomatization in a de-

pendent type system à la Martin-Löf (intuitionnistic type theory). But he

needs, as he says “at least one unreacheable cardinal α” (ibid., p. 5), which

means that one has to climb the cumulative hierarchy of axiomatic set the-

ory ZFC up to an inaccessible cardinal before redescending to a topological

space or to its fundamental groupoid – groupoids are a generalization of

the notion of group and they construct all morphisms as isomorphisms in

category theory by having a partial function instead of a binary operation

between group elements or objects. Here univalent logico-geometrical foun-

dations might be seen as multivalent transfinite arithmetical foundations!

It is true that Grothendieck didn’t care much about the cardinality of the

universes of his U-topoi, the totality of which could be called Utopia from a

finitist point of view! But here we are a far cry from the Kroneckerian point

of departure of SGA 1, to say the least. The set-theoretic background (the

category of sets) – as a matter of fact the category of sets is reducible to a

point in topoi theory and contractible to a point in homotopy type theory –

is the starting point of category theory and topos theory, but the algebraic

side of algebraic geometry finds its basic objects in simplicial sets, that is
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finite series of ordinals. Here, I would put Quillen’s original work in ho-

motopical algebra with the Quillen-Sullivan rational homotopy theory and

Joyal’s work on quasi-categories in the algebraic trend, while the geometric

side exploits the ground territory of (homogeneous) topological spaces with

the full resources of higher set theory. Of course, one could accept the log-

ical, classical equivalence of arithmetic descent with transfinite induction,

but from a constructivist point of view, it can be shown that the equiv-

alence does not hold since it involves the excluded middle principle via a

double negation over an infinite set of natural numbers (see Appendix 1 “La

descente infinie, l’induction transfinie et le tiers exclu” of Gauthier [2010]

: 133-151, and also Gauthier [2002]: 51). Let us note that higher topoi

theory, not unlike ordinary (lower) topoi theory, makes room for Heyting

topoi where a second-order intuitionistic logic leaves no place for the classi-

cal excluded middle principle. The arithmetic scope of arithmetic-algebraic

geometry appears to be more faithful to its Kroneckerian inspiration and I

want to look briefly at Langlands programme in that perspective.

.4 Langlands’ Programme

In his paper on contemporary problems with origins in Kronecker’s Jugend-

traum Langlands [1976] evokes Hibert’s 12th problem in the 1900 list which

reads “Extension of Kronecker’s proposition on Abelian fields over an arbi-

trary algebraic domain of rationality”. Hilbert declares that it is one of the

deepest and far-reaching problems of number theory and function theory to

generalize Kronecker’s proposition on the generation of every commutative

(Abelian) rational field through the decomposition of fields for the roots of

unity; the idea here is to extend the rational field to any algebraic num-

ber field – what is called today the Kronecker-Weber theorem asserts that

any Abelian extension of Q belongs to the cyclotomic field Q(ζm). Hilbert

holds the problem to be at the internal junction of number theory, algebra

and the theory of functions (analysis). Such a language recalls Kronecker’s

statement in his inaugural speech at the Berlin Academy of Science in the

year 1861 (see Kronecker [1968], vol. V : 388) :

[. . . ] the study of complex multiplication of elliptic functions

leading to works the object of which can be characterized as
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being drawn from analysis, motivated by algebra and driven by

number theory.

(my translation)

Kronecker was perfectly aware of the centrality of his programme which

he sees in the continuity of Gauss and Dirichlet and there is no doubt that

he hoped for a full arithmetization of analysis. The dream of his youth

(Jugendtraum) was that vision of an arithmetical theory of elliptic func-

tions, an arithmetic of ellipotomy or divison of the ellipse, as I venture to

say in analogy with the notion of cyclotomy. In a letter to Dedekind, Kro-

necker goes even as far as to say that the fundamental relation he has found

between arithmetic and analysis originates in a philosophical intuition (see

Kronecker [1899], vol. V : 453). Kronecker’s foundational insight is given its

fullest expression in his main paper on the arithmetical theory of algebraic

quantities of 1882 where he gives the final formulation of his Allgemeine

Arithmetik or General Arithmetic. It contains, in Kronecker’s words, the

complete development of the theory of entire (rational and algebraic) func-

tions of a variable together with the systems of divisors. In such a complete

theory, the association of forms allows for the conservation of the laws of

factorization, so that the passage from natural and rational domains to

the more general algebraic domains (of algebraic integers) is perfectly uni-

form. The conservative extension of arithmetic up to the highest reaches

of algebra – the theory of entire rational and algebraic functions – is the

ultimate goal of general arithmetic defined as the theory of all forms, ho-

mogeneous polynomials with integer coefficients and an arbitrary number

of indeterminates.

Langlands insists also on number theory in connection with algebraic

geometry, as Weil has taught. Here Langlands points to the continuation

of Kronecker’s work on Abelian extensions by the generalization to Abelian

varieties in the hands of a long offspring of number theorists from Hilbert to

Shimura and Deligne. For example, Shimura varieties embody some ideas

of Kronecker who sought arithmetic objects within the analytic core of el-

liptic functions. Abelian varieties are nowadays spread out over algebraic

number fields, finite fields, local fields and extend to contemporary arith-

metic algebraic geometry in the work of Faltings and Wiles – by the way,

descent is still present in the proof of Fermat’s last theorem, if it is only by
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the Noetherian ring on the sequence of primes, modular and automorphic

forms being on their side generalizations of Kronecker’s modular sytems.

Langlands’ programme or Langlands’ philosophy, as it has come to be

known, could be seen as a contemporary revival of Kronecker’s idea of

the deep analogy or correspondence between number fields and function

fields. Evidently, as I mentioned above, the contemporay mathematician

will not refrain from transcendental methods, but when he comes down

to the arithmetic level, he sticks as the typical arithmetician would say,

to the motto “denumerable at infinity”, which means that denumerable

infinity is seen as a limit or that the non-denumerable is unknown territory

(terra incognita). Langlands’ philosophy has met with success in two recent

instances, Lafforgue’s and Ngô’s contributions to Langlands’ programme. I

want to deal briefly with Laurent Lafforgue’s result.

Lafforgue [2002] has succeeded in showing the exact Langlands’ corre-

spondence between pieces of the modular space (or algebraic variety) and

its (denumerable) rational points with the help of an iteration technique

on Drinfel’d chtoukas – chtoukas comes from the Russian штука and is

drawn from the German Stücke, meaning pieces. The ground field of Lang-

lands’ correspondence is a finite field F with a Galois group G and we

come back to the priviledged arena of applications for Fermat’s descent on

Weil’s conception. I’ll not pursue that theme, but only recall that Drin-

fel’d himself has drawn on some motives from Kronecker : his chtoukas are

elliptic modules and have an ancestral relationship to Kronecker’s search

for arithmetic objects or “discrete pieces” in the complex multiplication of

elliptic functions.

Kronecker’s dream and programme of a general arithmetic have pro-

vided a fertile soil for large-scale foundational projects, if only as deep-

seated motivations or inspirational ideas. The immediate and long-term

posterity of Kronecker’s programme includes a vast number of people from

Hurwitz and Hensel to Weil and Langlands – see the overview of the sec-

ondary literature by Marion [1995]. One should include in the list Brouwer,

Poincaré and the French semi-intuitionists like Borel and Lebesgue to a cer-

tain extent and even Hadamard, who did borrow from Kronecker’s arith-

metical theory of functions for the particular purposes of topology e.g. the

winding number (Windungszahl) which is an integer or index giving the

number of times a closed curve c passes around a designated point P in

the plane or in contemporary idiom the topological degree for a continuous
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function to itself on the closed unit ball Dn. Russian constructivists like

Markov, Shanin, Kolmogorov up to Essenine-Volpin have also some share

of Kronecker’s finitism. But it is certainly in algebraic geometry that Kro-

necker’s heritage is most strongly felt. Weil [1976] considers Kronecker as

the originator of modern algebraic (arithmetic) geometry in the sense that

Kronecker has initiated the work on the arithmetic of elliptic functions –

they have become the elliptic curves or the modular forms of the contempo-

rary scene. Elliptic curves even play a role in recent cryptography, for they

have an arithmetical content hidden under their surface of intersection!

.5 Kronecker’s and Hilbert’s programmes in contemporary

mathematical logic

I see Hilbert’s metamathematical programme as the continuation of Kro-

necker’s arithmetical programme with other means, that is the means of

logic. In turn, I consider Hilbert’s theory of formal systems and axioma-

tization as the initiation of the arithmetization of logic after Kronecker’s

arithmetization programme. Such an arithmetization of logic is manifest

in contemporary theoretical computer science and in applied proof theory.

I want to emphasize the new developments in Hilbert’s proof-theoretical

programme.

It is common knowledge that metamathematics or proof theory is con-

cerned with finitary methods, as in Hilbert’s conception of the theory of

formal systems. I contend (see Gauthier [1989], [1991], [1994], [2002]) that

the consistency question is the crux of the matter and that it requires a finis-

tist approach in the sense of Kronecker, as some Hilbert’s early manuscripts

seem to attest – see Hallett [1995] and also Sieg [1999] for Hilbert’s later

papers. The rather sketchy attempt on the simultaneous foundation of

logic and arithmetic (Hilbert [1905]) puts forward the concept of homo-

geneous equations in a manner reminiscent of Kronecker’s combinatorial

theory of homogeneous polynomials. Consistency, following Hilbert boils

down to the homogeneous equation a = a or inequation a 
= a. In his report

on Hilbert’s research on the foundations of arithmetic, Bernays says that

Hilbert, in spite of his durable opposition to Kronecker whom he accused

of dogmatism, has wanted a reconciliation with Kronecker’s finitist stand :
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Kronecker has elaborated a clear conception which he has put

to use in many cases and his conception accords essentially with

our finitist position

(see Hilbert[1935] : vol. III : 203, my translation).

The quotation refers to Hilbert [1930] on the foundations of elementary

number theory and is a sequel to Hilbert’s paper “Über das Unendliche” [1926].

The finitist position in question is the metamathematical idea of proof the-

ory which I would formulate in the following way : To use finite logical

rules with transfinite axioms in order to extend the finite into the infinite.

The metamathematical conception is modeled after Kronecker’s extension

of elementary arithmetic into general arithmetic, an extension which should

preserve the conceptual determinations of elementary arithmetic, following

Kronecker; for Hilbert, the objective was to preserve the laws of finite logic

with the excluded middle principle in the transfinite (set-theoretic) realm

of ideal elements (ideale Elemente) for which classical (Aristotelian) logic

could not make place because it did not distinguish between the finite and

the transfinite — Kronecker could respond to Hilbert here by saying that

there was no actual infinite in Aristotelian logic either, but only a potential

infinite for Aristotle and Euclid. Logic will provide the passage from the

finite to the infinite, since there is no place for the infinite (Hilbert [1930]

: 487) as it was also proclaimed in the lecture “On the Infinite”. From my

point of view, Hilbert’s metamathematical programme is but the continu-

ation or the consequence of Kronecker’s arithmetization programme.

A further proof of Kronecker’s inspiration, if not direct influence, on

Hilbert’s proof theory is the introduction by Hilbert of the finite-type func-

tionals in his (unsuccessful) attempt to prove Cantor’s continuum hypothe-

sis in his 1926 paper “On the Infinite” (see Hilbert [1926]). As Kohlenbach

notes [2008] those finite-type functionals were used by Gödel [1958] in his

Dialectica interpretation for the consistency of intuitionistic arithmetic and

it is an essential tool (with Herbrand’s theorem) for applied proof theory

(see Gauthier [2009]); it must be added here that Gödel had already referred

to Hilbert’s construction in his 1931 paper on completeness and consistency

(cf. Über Vollständigkeit und Widerspruchsfreiheit. Ergebnisse eines math-

ematischen Kolloquiums 3 (1932): 13) where he imagines a transfinite se-

quence of formal systems of higher type. Let us remark though that in his
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proof for the consistency of intuitionnistic arithmetic (the Dialectica inter-

pretation), Gödel limits his (impredicative) construction to all finite types

up to ω. Hilbert’s idea was to introduce number-theoretic functions “as

those functions of an integral argument whose values are also integers” and

then add up functions of functions, functions of functions of functions in a

finite procedure for the iteration of types of functional variables over primi-

tive integral types. Those higher-type functionals according to their height

are associated with propositions that are supposed to come into a one-to-

one correspondence with the transfinite ordinals up to the ε0 of Cantor’s

second number class. Hilbert needed transfinite induction here, but since

only a finite iteration was necessary for the build-up of the functional hier-

archy, the methods of substitution and recursion would suffice to produce

a finitary proof, because subtitution and recursion are counted as finitary

procedures according to Hilbert. Hilbert’s course, I forcibly suggest, fol-

lows up or reproduces Kronecker’s construction of higher-level (Stufe) or

(Rang) forms or homogeneous polynomials in his 1883 paper (Kronecker

[1883]) where substitution and decomposition – or descent for recursion –

were used in a radical finitist setting, as I have shown above. Kronecker’s

idea was to build a finite hierarchy of (polynomial) functions to encompass

the content of general arithmetic, what he calls the multilevel extension

domain of arithmetic (stufenweise Gebietserweiterung der Arithmetik) in

the footsteps of Gauss (Kronecker [1882]: 356). Beyond and above this –

and despite his repeated finitist commitment (finite Einstellung) – Hilbert

wanted to include Cantor’s transfinite arithmetic (up to ε0).

lim
n→ω

ωω . .
.
ω}

n
= ε0.

One step further and the ordinal rank structure of von Neumann or the

cumulative rank structure of Zermelo-Fraenkel set theory would look like

transcendental extensions of Kronecker’s finite arithmetical rank construc-

tion! Indeed, Hilbert followed faithfully the Kroneckerian construction I

have outlined above in using the two fundamental procedures of substitu-

tion (for new variables) and recursion (Rekursion) where the values of a

function of height n+1 are derived from the values of a function of height n

(Hilbert [1926] : 184). Kronecker had instead polynomials of order n gen-
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erating a system of order n+1 by the product operation (Kronecker [1883]

: 419).

Hilbert’s attempt failed, but the construction was pursued by Hilbert’s

followers like Gentzen, Ackermann, Kalmár – with the infinite descent idea

– and Gödel in allegedly extended finitist ways – see my critique in Gauthier

[2002 : 57-58] where I insist that tranfinite induction with an (excluding

third) double negation on the infinite set of natural numbers cannot be

identified with infinite descent from a constructive finitist point of view.

Gödel did not use transfinite induction in his Dialectica interpretation, but

induction on all finite types and I contend that the functional interpretation

has a natural translation in the polynomial arithmetic of Kronecker’s theory

of higher-level forms (see Gauthier 2002: 74-76).

There is no doubt that Hilbert followed Kronecker’s steps in mathemat-

ics, for instance in algebraic invariant theory (Hilbert [1890] and Hilbert

[1893], see also Gauthier [1995]). From my point of view, Hilbert was deeply

influenced by Kronecker’s mathematical practice and in spite of his reac-

tion to Kronecker’s prohibition of transfinite methods (Hilbert [1926]), he

could not depart entirely from a finitist pragmatic and philosophical point

of view as far as mathematics is concerned (and logic for that matter). It is

only in 1917 that Hilbert resumed his foundational research and returned to

finitism, not without polemizing with Kronecker (posthumously!), Brouwer

and Weyl whom he considers as Kronecker’s direct heirs – for the variety of

Hilbert’s programmatic ideas, see Sieg [1999]. The simultaneous foundation

of logic and arithmetic still dominates his preoccupations and the recourse

to the notion of formal system is meant as a mechanism (a finite algorithm)

for the introduction of ideal elements. My hypothesis is that this process

mimicks Kronecker’s association of forms in his general arithmetic and the

consistency which is required for the association of ideal elements can only

be achieved by a formalism which is the exact counterpart of an arith-

metic (polynomial) algorithm, e.g. the method of descent as a generalized

Euclidean algorithm.

The propositions of general arithmetic that are found in Kronecker’s

1882 paper on the arithmetical theory of algebraic quantities can be con-

sidered as so many axioms from which Kronecker derived his results with

arithmetical means alone. In his paper on the axiomatic method ([1935],

vol. III : 146-156), Hilbert pinpoints the properties of independence and

consistency as the main features of the axiomatic method. Relative consis-
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tency of geometry and other scientific disciplines, Hilbert suggests, is based

on the consistency of arithmetic, but there is no further foundation for

arithmetic and, Hilbert adds, set theory. Logic is the ultimate foundation

and it must also be axiomatized; in the final analysis there only remains for

the axiomatic method the question of decidability which must be settled

“in a finite number of operations” (see [Hilbert 1935], vol. III : 155). Here

Hilbert gives the example of the theory of algebraic invariants for which

he had provided a finiteness proof inspired by the very method he had

used in his major result : Hilbert’s finite basis theorem depends heavily on

Kronecker’s own methods in general arithmetic and becomes the paradigm

case for the decidability property of a logical system! But there is no logic

involved in Hilbert’s result and his paradigmatic case is drawn from poly-

nomial arithmetic (Kronecker’s general arithmetic of forms). Decidability

implies, of course, that we have an algorithm or a finite procedure to decide

of a given question in a “finite number of steps”. We then come back to our

point of departure and it is not surprising to see that most decidable theo-

ries are elementary (first-order) algebraic theories and have ended up as the

subject matter of model theory, not proof theory. The method of quantifier

elimination, for instance, is a test for decidability and has been employed

by Tarski in his well-known model-theoretic results; van den Dries [1988]

has stressed the influence of Kronecker’s methods in that context. But then

what is the logical point of the decision method? A decidable theory, if con-

sistent, is finitely so. In the specific case elementary theories, logic does not

play any special role since the equational calculus of polynomials does not

need other operations than the purely arithmetical (combinatorial) laws.

The case for logic rests solely on the alleged conservative extensions of

arithmetic into the transfinite domain of ideal elements. I have discussed

extensively elsewhere (Gauthier [2002]) the relevance of Hilbert’s proposal

for such a “transfinite logic ”. It remains though that even if Hilbert had

hoped for a logical introduction of ideal elements, he has constantly stressed

that a finite process (or procedure) is the inference engine of internal con-

sistency (inhaltliches Schliessen).

Internal consistency is obtained by internal means in the case of gen-

eral arithmetic as in the case mentioned above of the theory of algebraic

invariants. Hilbert was not mistaken there and he saw consistency as inter-

nal to the polynomial equation calculus when he defined consistency as the

equation a = a and inconsistency as a 
= a. We have observed that one of
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the essential tools of consistency for Kronecker’s general arithmetic is the

convolution product which generates linear polynomial expressions from

higher-level polynomial expressions as in Kronecker’s result, Dedekind’s

Prague theorem or Hilbert’s work in invariant theory. The convolution or

Cauchy product can be called Cauchy diagonal. A serious blow to Hilbert’s

programme was administered from the outside, the “external ” Cantor di-

agonal in Gödel’s results. Of course, if Gödel’s first incompleteness result

assumed ω-consistency, the second incompleteness result resting on external

consistency could only be obtained from a transcendent point of view, as he

says, but Gödel didn’t exclude the possibility of an internal (innere) con-

sistency proof (see Gauthier [2007] and [2011]). It is not only set-theoretic

arithmetic, as Hilbert himself has named it, but also set theory (including

analysis) that he wanted to secure. It is a paradoxical situation for the lo-

gician Hilbert to see his full-blown programme for consistency of set theory

and analysis put in jeopardy by a set-theoretic device! In any case, Hilbert’s

programme can still be saved to a large extent and to a larger extent than

expected if we rethink it in the framework of Kronecker’s programme. Her-

brand (see [1968] : 152), a follower of Hilbert, wanted also a consistency

proof for arithmetic and he had formulated what I call Herbrand conjecture

(see Gauthier [1983]) :

Transcendental methods cannot demonstrate theorems in arith-

metic that could not be demonstrated by arithmetical means

alone.

(my tranlation)

Herbrand stated his conjecture for a suitable formal system which he does

not describe. Herbrand was also a practitioner of (algebraic) number theory

and he expressed himself in Kroneckerian terms when he used what he called

“intuitionistic” arguments where one supposes that an object, logical or

mathematical, does not exist without the means to construct it. In the

same line of thought, he defends the potential infinite for his notion of

infinite domain (champ infini) by saying that it is built iteratively (pas-à-

pas) or (Schritt zu Schritt) in Kroneckerian terms, an expression also used

by Skolem. Herbrand worked for instance on finite extensions of infinite

fields in the tradition of Hilbert and Kronecker, foreshadowing to some

extent the contemporary work of Weil and Serre.
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.6 Conclusion. Finitism and Arithmetism.

� Arithmetism � is the name I give to a foundational option in radical op-

position to logicism and to Frege’s question ([1893] : X) : “How far can one

go in arithmetic solely by deductive (logical) means ?” (Wie weit man in

der Arithmetik durch Schlüsse allein gelangen könnte? ), the arithmetician

Kronecker would respond : “How far can one go in mathematics with arith-

metic alone?” and Hilbert following suit as a logician would ask : “How far

can we go into the tranfinite using only finite logical means?”. One must ad-

mit that after the demise of the logicist programme (Frege and Russell) and

despite the efforts of philosophers and logicians to recover Frege’s logicist

foundations of arithmetic with the second-order Hume principle, it is Kro-

necker’s arithmetist programme which is still alive in the farthest reaches of

contemporary mathematics, arithmetic-algebraic geometry. That does not

mean however that mathematicians inspired by Kronecker from Hilbert to

Weil adhere wholly to the Kroneckerian doctrine of finitism. On the con-

trary, most would allow for methods that leave Kronecker’s arithmetical

safe haven and venture into transarithmetical (set-theoretic), geometrical

or analytical (trancendental) extended universes. A good pilot here is cer-

tainly Hilbert himself.

Hilbert introduced ideal elements (ideale Elemente) in order to have a

clear-cut divide between the finite and the non-finite, a divide that Aris-

totelian logic did oversee, because it could not survey – (Unübersichtlichkeit)

in Hilbert’s text [1926] – the extent of its applications. The idea of the

epsilon-calculus for the ε-symbol was to enable the extension of the sim-

ple laws of Aristotelian logic, excluded middle and universal instantiation

with existential import, to the transfinite universe of ideal statements.

Once this is achieved, one could redescend in the finite by elimination of

the ideal elements or the epsilon formulas by a finite process in polyno-

mial arithmetic, that is Hilbert’s use of infinite descent (die Methode der

Zurückführung) (see Gauthier [2011]) which reduces transfinite expressions

to arithmetical statements.

Intuitionistic logic, after the work of Brouwer, Kolmogorov, Heyting

and Gödel, fares better in discriminating between the finite and the infi-

nite, simply by rejecting the entension of classical logical laws beyond the

finite domain and by exploring the potential infinite. This explains why it

is the starting point of the functional interpretation privileged by applied
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proof-theorists; in their hands, intuitionistic logic is extended by various

non-constructive principles or one-way translations from intuitionistic logic

to classical logic. There is the foundational shift from Hilbert’s programme

and it has proven successful in recent proof-theoretic research with Kohlen-

bach [2008] and others.

If applied proof theory and the proof mining enterprise represent a shift

of emphasis in original (pure!) proof theory as Kohlenbach repeats after

Kreisel, it remains that the idea of extracting more constructive informa-

tion (with an enrichment of data) from a given classical proof concurs with

the idea of certainty (Sicherheit) or of certification (Sicherung) that Hilbert

defined as the ideal goal of his proof theory and the motto of applied proof

theory could very well be “More information, more certainty”. Detracting

from that ideal would mean fruitless prospection for proof-theorists, ei-

ther in the abstract realm of constructivist principles or in the mining field

of promising applications. Of course, the motto has to be substantiated

by further foundational research into the historical, logico-mathematical

and philosophical motives of proof theory. Hilbert was certainly the first

mathematician to think of mathematical proofs in terms of a systematic

study of the internal logic of deductive reasoning “das inhaltliche logis-

che Schliessen” in line with Kronecker’s constructive stance in his general

arithmetic “allgemeine Arithmetik” for which he claimed “innere Wahrheit

und Folgerichtigkeit”, that is internal truth and consistency ; these objec-

tives could very well be shared by applied proof theory in the search for

effective proofs in classical analysis where proofs were made available by

the (constructive and non-constructive) means at hand. Proof theory puts

the emphasis on proofs with the aim of making manifest their construc-

tive hidden content and I would count such an enterprise as a revival of

the Kroneckerian spirit with the logical means that Hilbert introduced in

the programme of the arithmetization of logic after the arithmetization of

analysis by Cauchy and Weirstrass along the arithmetization of algebra

by Kronecker. It is maybe in contemporary theoretical computer science,

for example in computational algebraic geometry with the Gröbner basis

technique as well as in a variety of computational disciplines, that arith-

metization can be pursued with a finite number of procedures as I would

translate Hensel’s phrase (eine endliche Anzahl von Versuchen) in the Pref-

ace of Kronecker [1901] to characterize Kronecker’s finitist arithmetism.
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[5] H.M. Edwards [1992], Kronecker’s Arithmetic Theory of Algebraic Quantities,

Jahresberichte der Deutschen Mathematiker Vereinigung 94:3 (1992), pp. 130–139.
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