FAQ
logo of Jagiellonian University in Krakow

A General Extension Theorem for Directed-Complete Partial Orders

Publication date: 06.09.2018

Reports on Mathematical Logic, 2018, Number 53, pp. 79-96

https://doi.org/10.4467/20842589RM.18.005.8838

Authors

,
Peter Schuster
Dipartimento di Informatica, Università degli Studi di Verona Strada le Grazie 15, 37134 Verona, Italy
Leeds University
Contact with author
All publications →
Daniel Wessel
Dipartimento di Informatica, Università degli Studi di Verona Strada le Grazie 15, 37134 Verona, Italy
Contact with author
All publications →

Download full text

Titles

A General Extension Theorem for Directed-Complete Partial Orders

Abstract

The typical indirect proof of an abstract extension theorem, by the Kuratowski-Zorn lemma, is based on a onestep extension argument. While Bell has observed this in case of the axiom of choice, for subfunctions of a given relation, we now consider such extension patterns on arbitrary directed-complete partial orders. By postulating the existence of so-called total elements rather than maximal ones, we can single out an immediate consequence of the Kuratowski-Zorn lemma from which quite a few abstract extension theorems can be deduced more directly, apart from certain definitions by cases. Applications include Baer’s criterion for a module to be injective. Last but not least, our general extension theorem is equivalent to a suitable form of the Kuratowski-Zorn lemma over constructive set theory.

References

Download references

[1] P. Aczel, Zorn’s Lemma in CZF, unpublished, 2002.

[2] P. Aczel, Aspects of general topology in constructive set theory, Annals of Pure and Applied Logic 137:1–3 (2006), 3–29.

[3] P. Aczel and M. Rathjen, Notes on constructive set theory. Technical report, Instiut Mittag-Leffler, 2000/01. Report No. 40.

[4] P. Aczel and M. Rathjen, Constructive set theory, book draft, 2010.

[5] J.L. Bell, Zorn’s lemma and complete Boolean algebras in intuitionistic type theories, The Journal of Symbolic Logic 62:4 (1997), 1265–1279.

[6] U. Berger, A computational interpretation of open induction, In: F. Titsworth, editor, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, 2004, pp. 326–334.

[7] T. Coquand, Constructive topology and combinatorics, In: Constructivity in Computer Science (Summer Symposium San Antonio, TX, June 19–22, 1991 Proceeding), vol. 613 of Lecture Notes in Computer Science, Springer, Berlin and Heidelberg, 1992, pp. 159–164.

[8] R. Diaconescu, Axiom of choice and complementation, Proceedings of the American Mathematical Society 51:1 (1975), 176–178.

[9] N.D. Goodman and J. Myhill, Choice implies excluded middle, Mathematical Logic Quarterly 24:461 (1978), 25–30.

[10] M. Hendtlass and P. Schuster, A direct proof of Wiener’s theorem, In: S.B. Cooper, A. Dawar and B. L¨owe, editors, How the World Computes. Turing Centenary Conference and Eighth Conference on Computability in Europe, vol. 7318 of Lecture Notes in Computer Science, Springer, Berlin and Heidelberg, 2012. Proceedings, CiE 2012, Cambridge, UK, June 2012, pp. 294–303,

[11] K. Kuratowski, Une méthode d’élimination des nombres transfinis des raisonnements mathématiques, Fundamenta Mathematicae 3:1 (1922), 76–108.

[12] D.G. Northcott, An Introduction to Homological Algebra, Cambridge University Press, 1960.

[13] H. Perdry, Strongly Noetherian rings and constructive ideal theory, Journal of Symbolic Computation 37:4 (2004), 511–535.

[14] J.-C. Raoult, Proving open properties by induction, Information Processing Letters 29:1 (1988), 19–23.

[15] G. Sambin, Some points in formal topology, Theoretical Computer Science 305:1-3 (2003), 347–408.

[16] P. Schuster, Induction in algebra: a first case study, In: 27th Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE Computer Society Publications, 2012. Proceedings, LICS 2012, Dubrovnik, Croatia, pp. 581–585.

[17] E. Szpilrajn, Sur l’extension de l’ordre partiel, Fundamenta Mathematicae 16:1 (1930), 386–389.

[18] P. V´amos and D.W. Sharpe, Injective modules, Cambridge Tracts in Mathematics and Mathematical Physics 62, Cambridge University Press, 1972.

[19] M. Zorn, A remark on method in transfinite algebra, Bulletin of the American Mathematical Society 41:10 (1935), 667–670.

Information

Information: Reports on Mathematical Logic, 2018, Number 53, pp. 79-96

Article type: Original article

Authors

Dipartimento di Informatica, Università degli Studi di Verona Strada le Grazie 15, 37134 Verona, Italy

Leeds University

Dipartimento di Informatica, Università degli Studi di Verona Strada le Grazie 15, 37134 Verona, Italy

Published at: 06.09.2018

Received at: 27.06.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Peter Schuster (Author) - 50%
Daniel Wessel (Author) - 50%

Classification number:

AMS:

Axiom of choice and related propositions (03E25)
Other constructive mathematics (03F65)

Article corrections:

-

Publication languages:

English

A General Extension Theorem for Directed-Complete Partial Orders

cytuj

pobierz pliki

RIS BIB ENDNOTE