FAQ
Polish Academy of Arts and Sciences logo

Comparison of methods used in cartography for the skeletonisation of areal objects

Publication date: 12.2015

Geoinformatica Polonica, 2015, Vol. 14 (2015), pp. 85 - 94

Authors

Stanisław Szombara
AGH University of Krakow
https://orcid.org/0000-0002-0205-7823 Orcid
Contact with author
All publications →

Titles

Comparison of methods used in cartography for the skeletonisation of areal objects

Abstract

The article presents a method that would compare skeletonisation methods for areal objects. The skeleton of an areal object, being its linear representation, is used, among others, in cartographic visualisation. The method allows us to compare between any skeletonisation methods in terms of the deviations of distance differences between the skeleton of the object and its border from one side and the distortions of skeletonisation from another. In the article, 5 methods were compared: Voronoi diagrams, densifi ed Voronoi diagrams, constrained Delaunay triangulation, Straight Skeleton and Medial Axis (Transform). The results of comparison were presented on the example of several areal objects. The comparison of the methods showed that in all the analysed objects the Medial Axis (Transform) gives the smallest distortion and deviation values, which allows us to recommend it.

References

Download references

Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B., 1995. A Novel Type of Skeleton for Polygons. Journal of Universal Computer Science, 1 (12), pp. 752–761.

Bieda, A., Hycner, R., 2012. Administrative legal borders run along rivers. Geomatics and Environmental Engineering, 6 (2), p. 15.

Blum, H., 1967. A Transformation for Extracting New Descriptors of Shape. [In:] W. Whaten-Dunn, ed. Models for the Perception of Speech and Visual Form. MIT Press, Cambridge, Mass., pp. 362–380.

Burghardt, D., Duchêne, C., Machaness, W., 2014. Abstracting Geographic Information in a Data Rich World. Springer.

Choi, H.I., Choi, S.W., Moon, H.P., 1997. Mathematical theory of medial axis transform. Pacific Journal of Mathematics, 181 (1), pp. 57–88.

Christensen, A.H.J., 1999. Cartographic Line Generalization with Waterlines and Medial-Axes. Cartography and Geographic Information Science, 26 (1), pp. 19–32.

Christensen, A.H.J., 2003. Two experiments on stream network generalization. [In:] Proceedings of the 21st International Cartographic Conference. Durban, South Africa, pp. 10–16.

Chrobak, T., 2012. The map and geoinformatics. Geoinformatica Polonica, 11, pp. 7–16.

Gökgöz, T., Gülgen, F., 2004. Comparison of Two Methods for Deriving Skeleton Lines of Terrain. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35 (1991), pp. 618–622.

Gold, C.M., Mioc, D., Anton, F., Sharma, O., Dakowicz, M., 2008. A Methodology for Automated Cartographic Data Input, Drawing and Editing Using Kinetic Delaunay/Voronoi Diagrams. [In:] M. Gavrilova, ed. Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence SE - 7. Berlin Heidelberg: Springer, pp. 159–196.

Haunert, J.-H., Sester, M., 2007. Area Collapse and Road Centerlines based on Straight Skeletons. GeoInformatica, 12 (2), pp. 169–191.

Jones, C.B., Bundy, G.L., Ware, J.M., 1999. Map Generalization with a Triangulated Data Structure. Cartography and Geographic Information Science, 22 (4), pp. 317–331.

Katz, R.A., Pizer, S.M., Carolina, N., 2003. Untangling the Blum Medial Axis Transform. International Journal of Computer Vision, 55 (2/3), pp. 139–153.

Lavin, I., 1993. Picasso’s Bull(s): Art History in Reverse. Art in America, LXXXI, pp. 76–93.

Lee, D.T., 1982. Medial Axis Transformation of a Planar Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4 (4), pp. 363–369.

Li, Z., 2007. Algorithmic Foundation of Multi-Scale Spatial Representation. London: CRC Press.

De Lucia, A., Black, T., 1987. A comprehensive approach to automatic feature generalization. [In:] Proceedings of the 13th International Cartographic Conference. Morelia, Mexico, pp. 169–192.

Okabe, A., Boots, B., Sugihara, K., Chiu, S.N., 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. ed. 2. Production. Chichester, England: Wiley.

Penninga, F., Verbree, E., Quak, W., Oosterom, P., 2005. Construction of the Planar Partition Postal Code Map Based on Cadastral Registration. GeoInformatica, 9 (2), pp. 181–204.

Su, B., Li, Z., Lodwick, G., 1998. Morphological Models for the Collapse of Area Features in Digital Map Generalization. GeoInformatica, 2 (4), pp. 359–383.

Szombara, S., 2013a. Unambiguous Collapse Operator of Digital Cartographic Generalisation. [In:] Proceedings of 16th ICA Workshop on Generalisation and Map Production. Drezno, 23–24 sierpnia: International Cartographic Association.

Szombara, S., 2013b. Transformation of areal objects into linear objects, regarding the map scale. Geoinformatica Polonica, 12, pp. 23–34.

Szombara, S., 2014. Uogólniony operator harmonizacji w cyfrowej generalizacji kartografi cznej. Akademia Górniczo-Hutnicza im. Stanisława Staszica.

Information

Information: Geoinformatica Polonica, 2015, Vol. 14 (2015), pp. 85 - 94

Article type: Original article

Titles:

English:

Comparison of methods used in cartography for the skeletonisation of areal objects

Polish: Porównanie metod szkieletyzacji obiektów powierzchniowych stosowanych w kartografii

Published at: 12.2015

Article status: Open

Licence: None

Percentage share of authors:

Stanisław Szombara (Author) - 100%

Article corrections:

-

Publication languages:

English

View count: 1808

Number of downloads: 1495