FAQ
Jagiellonian University logo

Low-level genetic diversity of opalinid morphotypes from the digestive tract of Hoplobatrachus rugulosus (Batrachia, Amphibia) in Thailand

Publication date: 14.12.2017

Acta Protozoologica, 2017, Volume 56, Issue 4, pp. 235 - 243

https://doi.org/10.4467/16890027AP.17.021.7823

Authors

,
Eleni Gentekaki
Mae Fah Luang University, Chiang Rai, Thailand
Chulalongkorn University, Bangkok, Thailand
All publications →
Chitchai Chantangsi
Mae Fah Luang University, Chiang Rai, Thailand
Chulalongkorn University, Bangkok, Thailand
All publications →

Titles

Low-level genetic diversity of opalinid morphotypes from the digestive tract of Hoplobatrachus rugulosus (Batrachia, Amphibia) in Thailand

Abstract

Opaline is an unusual group of protists, characterized by the presence of flagella covering their whole body. They reside in the intestinal tracts of various animals, most notably amphibians. While there is a wealth of data regarding the morphological features of opalines, molecular data are extremely sparse. Consequently, the extent of diversity of this understudied group remains unknown. Here, we examine opalines from the intestinal tract of the amphibian Hoplobatrachus rugulosus in Thailand. We provide micrographs obtained from light and scanning electron microscopy of various opalinid morphotypes. Furthermore, we enrich the database of opaline sequences by providing new molecular data of the small subunit ribosomal DNA gene of these species. In our phylogenetic analyses, the newly derived sequences form a cluster sister to Protoopalina.

References

Download references
Alfellani M. A., Taner-Mulla D., Jacob A. S., Imeede C. A., Yoshikawa H., Stensvold C. R., Clark C. G. (2013) Genetic diversity of Blastocystis in livestock and zoo animals. Protist 164: 497–509
Amiet J.-L., Affa’a F.-M. (1985) A propos des strategies d’infestation chez les protozoaires parasites ou endocommensaux des amphibiens anoures du Cameroun. Rev. Ecol. (Terre Vie)40: 389–398
Capella-Gutierrez S., Silla-Martinez J. M., Gabaldon T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973
Delvinquier B. L. J., Desser S. S. (1996) Opalinidae (Sarcomastigophora) in North American Amphibia. Genus Opalina Purkinje and Valentin, 1835. Syst. Parasitol33: 33–51
Delvinquier B. L. J., Patterson D. J. (1993) The Opalines. In: Kreier, J. P., Baker, J. R. (Eds), Parasitic Protozoa. Academic Press, San Diego, pp: 247–325
Delvinquier B. L. J., Markus M. B., Passmore N. I. (1991a) Opalinidae in African Anura I. Genus Opalina. Syst. Parasitol. 19: 119–146
Delvinquier B. L. J., Markus M. B., Passmore N. I. (1991b) Opalinidae in African Anura II. Genera Protozelleriella n. g. and ZelleriellaSyst. Parasitol. 19: 159–185
Delvinquier B. L. J., Markus M. B., Passmore N. I. (1992) Opalinidae in African Anura III. Genus CepedeaSyst. Parasitol. 24: 53–80
Delvinquier B. L. J., Markus M. B., Passmore N. I. (1995) Opalinidae in African Anura IV. Genus ProtoopalinaSyst. Parasitol. 30: 81–120
Evans K. M., Wortley A. H., Simpson G. E., Chepurnov V. A., Man D. G. (2008) A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). J. Phycol
Finlay B. J., Esteban G. F., Brown S., Fenchel T., Hoef-Emden K. (2006) Multiple cosmopolitan ecotypes within a microbial eukaryote morphospecies. Protist157: 377–390
Gentekaki E., Lynn D. H. (2010) Evidence for cryptic speciation in Carchesium polypinum Linnaeus, 1758 (Ciliophora: Peritrichia) inferred from mitochondrial, nuclear and morphological markers. J. Eukaryot. Microbiol57: 508–519
Katoh K., Misawa K., Kuma K. I., Miyata T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res30: 3059–3066
Katz L. A., de Berardinis J., Hall M. S., Kovner A. M., Dunthorn M., Muse S. V. (2011) Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinataJ. Mol. Evol
Kimura M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol16: 111–120
Kostka M., Hampl V., Cepicka I., Flegr J. (2004) Phylogenetic position of Protoopalina intestinalis based on SSU rRNA gene sequence. Mol. Phylogenet. Evol. 33: 220–224
Lahr D. J. G., Laughinghouse H. D., Oliverio A. M., Gao F., Katz L. A. (2014) How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. Bioessays 36: 950–959
Maslov D. A., Votypka J., Yurchenko V., Lukes J. (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol29: 43–52
McCallum F., Maden B. E. H. (1985) Human 18S ribosomal RNA sequence inferred from DNA sequence. Biochem. J. 232: 725–733
Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499
Miller M. A., Pfeiffer W., Schwartz T. (2010) “Creating the CIPRES science gateway for inference of large phylogenetic trees” in proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA pp: 1–8
Mohammad K. N., Badrul M. M., Mohamad N., Zainal-Abidin A. H. (2013) Protozoan parasites of four species of wild anurans from a local zoo in Malaysia. Trop. Biomed30: 615–620
Nishi A., Ishida K., Endoh H. (2005) Reevaluation of the evolutionary position of opalinids based on 18S rDNA and α- and β-tubulin gene phylogenies. J. Mol. Evol60: 695–705
Ronquist F., Huelsenbeck J. P. (2003) MrBayes3, Bayesian inference under mixed models. Bioinformatics 19: 1572–1574
Saez A. G., Probert I., Geisen M., Quinn P., Young J. R., Medlin L. K. (2003). Pseudo-cryptic speciation in coccolithophores. Proc. Natl. Acad. Sci. U.S.A. 100: 7163–7168
Sanchez R., Serra F., Tarraga J., Medina I, Carbonell J., Pulido L., de Maria A., Capella-Gutierrez S., Huerta-Cepas J., Gabaldon T., Dopazo J., Dopazo H. (2011) Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res39: W470–W474
Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690
Stensvold C. R., Alfellani M., Clark G. C. (2012) Levels of genetic diversity vary dramatically between Blastocystis subtypes. Infect. Genet. Evol12: 263–273
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol28: 2731–2739
Yang W. C. T. (1960) On the continuous culture of opalinids. J. Parasitol46: 32
Yurchenko V., Lukes J., Tesarova M., Jirku M., Maslov D. A. (2008) Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus CrithidiaProtist 159: 99–114

Information

Information: Acta Protozoologica, 2017, Volume 56, Issue 4, pp. 235 - 243

Article type: Original article

Authors

Mae Fah Luang University, Chiang Rai, Thailand

Chulalongkorn University, Bangkok, Thailand

Mae Fah Luang University, Chiang Rai, Thailand

Chulalongkorn University, Bangkok, Thailand

Published at: 14.12.2017

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Eleni Gentekaki (Author) - 50%
Chitchai Chantangsi (Author) - 50%

Article corrections:

-

Publication languages:

English
© Copyright by Wydawnictwo Uniwersytetu Jagiellońskiego created by OPENFORM