Piotr Solarczyk
Acta Protozoologica, Volume 58, Issue 1, 2019, pp. 1 - 5
https://doi.org/10.4467/16890027AP.19.001.10832Giardia duodenalis is one of the most widespread intestinal parasites of humans and other vertebrates. In terms of public health, identification of Giardia assemblages in wildlife is important because only some assemblages of G. duodenalis can infect humans. Here, we use loop-mediated isothermal amplification (LAMP) and genotyping of analysis of the β-giardin gene to screen the zoonotic assemblages of G. duodenalis recovered from faeces of free-living European wildcats (Felis s. silvestris) from Luxembourg. Giardia DNA was detected in one animal (10%) and assigned to assemblage B by both methods. This is the first detection and genotyping of G. duodenalis in a European wild felid in general, and of assemblage B in particular. Free-living wildcats may act as reservoirs of G. duodenalis infectious for humans and other wildlife and domestic animals. Using a combination of LAMP- and genotyping-based methods allowed effective, sensitive, and rapid detection of a zoonotic G. duodenalis assemblage B in wildlife.
Piotr Solarczyk
Acta Protozoologica, Volume 60, 2021, pp. 13 - 20
https://doi.org/10.4467/16890027AP.21.002.14062Cyclospora is an intracellular, gastrointestinal parasite found in birds and mammals worldwide. Limited accessibility of the protozoan for experimental use, scarcity, genome heterogeneity of the isolates and narrow panel of molecular markers hamper zoonotic investigations. One of the significant limitation in zoonotic studies is the lack of precise molecular tools that would be useful in linking animal vectors as a source of human infection. Strong and convincing evidence of zoonotic features will be achieved through proper typing of Cyclospora spp. taxonomic units (e.g. species or genotypes) in animal reservoirs. The most promising method that can be employ for zoonotic surveys is next-generation sequencing.
Piotr Solarczyk
Acta Protozoologica, Volume 57, Issue 1, 2018, pp. 43 - 48
https://doi.org/10.4467/16890027AP.18.003.8397iardia duodenalisis one of the six Giardia species and itis the most common, cosmopolitan flagellate that infects humans and many species of animals.This species exhibits considerable genetic diversity; to date, eight assemblages (A–H) have been defined. These assemblages differ in host specificity: assemblages A and B have beenfound in both humans and in many animal species. Mixed infections with Giardia (A and B) assemblages have been reported in humans and in animals. Many molecular techniques are effective and rapid for the detection of G. duodenalis and also forthe determination of genetic variability of isolates in clinical and environmental samples. In this context, the aim of this study was to design new assemblage-specific primers for rapid detection and identification ofG. duodenalis assemblages A and B and both of these assemblages simultaneously using quantitative real-time polymerase chain reaction (qPCR). Fragments of glutamate dehydrogenase and triose phosphate isomerase were used as targets in the design of primers.
In conclusion, the use of G. duodenalis assemblage-specific primers designed in this study allows quick identification of human infectious G. duodenalis assemblages A and B as well as mixed AB assemblages in a sample without further sequencing of the amplification products, which reduces the cost of study and the waiting time for the results.