New primers for fast detection of Giardia duodenalis assemblages A and B using realtime PCR
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTENew primers for fast detection of Giardia duodenalis assemblages A and B using realtime PCR
Publication date: 19.09.2018
Acta Protozoologica, 2018, Volume 57, Issue 1, pp. 43 - 48
https://doi.org/10.4467/16890027AP.18.003.8397Authors
New primers for fast detection of Giardia duodenalis assemblages A and B using realtime PCR
iardia duodenalisis one of the six Giardia species and itis the most common, cosmopolitan flagellate that infects humans and many species of animals.This species exhibits considerable genetic diversity; to date, eight assemblages (A–H) have been defined. These assemblages differ in host specificity: assemblages A and B have beenfound in both humans and in many animal species. Mixed infections with Giardia (A and B) assemblages have been reported in humans and in animals. Many molecular techniques are effective and rapid for the detection of G. duodenalis and also forthe determination of genetic variability of isolates in clinical and environmental samples. In this context, the aim of this study was to design new assemblage-specific primers for rapid detection and identification ofG. duodenalis assemblages A and B and both of these assemblages simultaneously using quantitative real-time polymerase chain reaction (qPCR). Fragments of glutamate dehydrogenase and triose phosphate isomerase were used as targets in the design of primers.
In conclusion, the use of G. duodenalis assemblage-specific primers designed in this study allows quick identification of human infectious G. duodenalis assemblages A and B as well as mixed AB assemblages in a sample without further sequencing of the amplification products, which reduces the cost of study and the waiting time for the results.
Almeida A., Pozio E., Cacció S. M. (2010) Genotyping of Giardia duodenalis cysts by new real-time PCR assay for detection of mixed infections in human samples. Appl. Environ. Microbiol. 76: 1895–1901
Alonso J. L., Amoros, Guy R. A. (2014) Quantification of viable Giardia cysts and cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitol. Res. 113: 2671–2267
Amar C. F., Dear, P. H., Pedraza-Diaz S., Looker N., Linnane E., McLauchlin J. (2002) Sensitive PCR-restriction fragment length polymorphism assay for detection and genotyping of Giardia intestinalis in human feces. J. Clin. Microbiol. 40: 446–452
Cacciò S. M., Ryan U. (2008) Molecular epidemiology of giardiasis. Mol. Biochem. Parasitol. 160: 75–80
Feng Y., Xiao L. (2011) Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin. Microbiol. Rev. 24: 110–140
Gotfred-Rasmussen H., Lund M., Enemark H. L., Erlandsen M., Petersen E. (2016) Comparison of sensitivity and specificity of 4 methods for detection of Giardia duodenalis in feces: immunofluorescence and PCR are superior to microscopy of concentrated iodine-stained samples. Diagn. Microbiol. Infect. Dis. 84: 187–190
Gizzi A. B, Oliveira T. S., Leutenegger C. M., Estrada M., Kozemjakin D. A., Stedile R., Marcondes M., Biondo A. W. (2014) Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reaction-based panel. BMC Vet. Res. 10: 1–8
Guy R. A., Payment P., Ulrich J. K., Horgen P. A. (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl. Enviro. Microbiol. 69: 5178–5185
Guy R. A., Xiao Ch., Paul A. H. (2004) Real-time PCR assay for detection and genotype differentiation of Giardia lamblia in stool specimens. J. Clin. Microbiol. 42: 3317–3320
Heyworth M. F. (2016) Giardia duodenalis genetic assemblages and hosts. Parasite 23: 1–5
Jerlstorm-Hultqvist J., Ankarklev J., Svard S. G. (2010) Is human giardiasis caused by two different Giardia species? Gut Microbes. 1: 379–382
McGlade T. R., Robertson I. D., Elliot A. D., Read C, Thompson R. C. (2003) Gastrointestinal parasites of domestic cats in Perth, Western Australia. Vet. Parasitol. 117: 251–262
Monis P. T., Caccio S. M., Thompson R. C. (2009) Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 25: 93–100
Pallant L., Barutzki D., Schaper R., Thompson R. C. A. (2015) The epidemiology of infections with Giardia species and genotypes in well cared for dogs and cats in Germany. Parasit. Vectors 8: 2–14
Prasertbun R., Sukthana Y., Popruk S. (2012) Real-time PCR: Benefits for detection of mild and asymptomatic Giardia infections. Trop. Med. Health 40: 31–35
Ryan U., Cacciò S. M. (2013) Zoonotic potential of Giardia. Int. J. Parasitol. 43: 943–956
Solarczyk P., Werner A., Majewska A. C. (2010) Genotypowanie izolatów Giardia duodenalis uzyskanych od ludzi w zachodnio-centralnej Polsce. Wiad. Parazytol. 56: 71–177
Schuurman T., Lankamp P., van Belkum A., Kooistra-Smid M., van Zwet A. (2007) Comparison of microscopy, real-time PCR and a rapid immunoassay for the detection of Giardia lamblia in human stool specimens. Clin. Microbiol. Infect. 13: 1186–1191
Skrzypczak Ł. (2016) Występowanie stadiów dyspersyjnych Giardia i Cryptosporidium w wodzie z fontann i kąpielisk. [Occurrence of dispersive stages of Giardia and Cryptosporidium in water from fountains and swimming sites] Doctoral thesis. Poznań University of Medical Sciences, Department of Biology and Medical Parasitology, 1–109
Solarczyk P., Majewska A. (2010) A survey of the prevalence and genotypes of Giardia duodenalis infecting household and sheltered dogs. Parasitol. Res. 106: 1015–1019
Solarczyk P., Majewska A. C., Moskwa B., Cabaj W., Dabert M., Nowosad P. (2012) Multilocus genotyping of Giardia duodenalis isolates from red deer (Cervus elaphus) and roe deer (Capreolus capreolus) from Poland. Folia Parasitol. (Prahga) 59: 237–240
Solarczyk P., Majewska A. C., Słodkowicz-Kowalska A. (2014) Axenic in vitro culture and molecular characterization of Giardia duodenalis from red deer (Cervus elaphus) and Thomson’s gazelle (Gazella thomsonii). Acta Parasitol. 59: 763–766
Solarczyk P., Majewska A. C., Jędrzejewski S., Górecki M. T., Nowicki S., Przysiecki P. (2016) First record of Giardia assemblage D infection in farmed raccoon dogs (Nyctereutes procyonoides). Ann. Agric. Environ. Med. 23: 595–597
Sprong H., Cacciò S. M., van der Giessen J. W. (2009) ZOOPNET network and partners. Identification of zoonotic genotypes of Giardia duodenalis. PLoS Negl. Trop. Dis. 3: 1–12
Stojecki K., Sroka J., Cencek T., Dutkiewicz J. (2015) Epidemiological survey in Łęczyńsko-Włodawskie Lake District of eastern Poland reveals new evidence of zoonotic potential of Giardia intestinalis. Ann. Agric. Environ. Med. 22: 594–598
Xu F., Jerlstorm-Hultqvist J., Andersson J. O. (2012) Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species. Mol. Biol. Evol. 29: 2859–2858
Zhang P., Liu P., Alsarakibi M., Li J., Liu T., Li Y., Li G. 2012. Application of HRM assays with EvaGreen dye for genotyping Giardia duodenalis zoonotic assemblages. Parasitol. Res. 111: 2157–2163
Zhang H., Zhang X., Zhang S., Wei B., Jiang Q., Yu X. (2013) Detecting Cryptosporidium parvum and Giardia lamblia by coagulation concentration and real-time PCR quantification. F. E. S. E. 7: 49–54
Vanni I., Caccio S. M., van Lith L., Lebbad M., Svard S. G., Pozio E., Tosini F. (2012) Detection of Giardia duodenalis assemblages A and B in human feces by simple, assemblage-specific PCR assays. PLoS Negl. Trop. Dis. 6: 1–9
Verweij J. J., Schinkel J., Laeijendecker D., van Rooyen M. A. A., van Lieshout L., Polderman A. M. (2003) Real-time PCR for the detection of Giardia lamblia. Mol. Cell. Probes. 17: 223–225
Xiao L., Fayer R. (2008) Molecular characterization of species and genotypes of Giardia and Cryptosporidium and assessment of zoonotic transmission. Int. J. Parasitol. 38: 1239–1255
Information: Acta Protozoologica, 2018, Volume 57, Issue 1, pp. 43 - 48
Article type: Original article
Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
Department of Parasitology, National Veterinary Research Institute, Pulawy, Poland
The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
Poznan University of Medical Sciences
Poland
Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
Published at: 19.09.2018
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2467
Number of downloads: 1320