FAQ

IPMSM with SMCrotor – optimization and experimental results

Data publikacji: 16.12.2015

Czasopismo Techniczne, 2015, Elektrotechnika Zeszyt 1-E (8) 2015, s. 353-362

https://doi.org/10.4467/2353737XCT.15.055.3855

Autorzy

,
Rafał Piotuch
Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin
Wszystkie publikacje autora →
Ryszard Pałka
Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin
Wszystkie publikacje autora →

Pobierz pełny tekst

Tytuły

IPMSM with SMCrotor – optimization and experimental results

Abstrakt

The work presented in this paper relates to an Interior Permanent Magnet Synchronous Motor (IPMSM) experimental results and optimization procedure programed in Matlab and Maxwell environments. The stator of the machine is a conventional stator with distributed winding. The subject of the first optimization stage was the geometry of the IPM machine, concerning average torque value maximization and maximum cogging torque value minimization under physical and technological constraints. The optimized rotor core is made of from Magnetic Powder (SMC). It was tested in a generator regime.

Bibliografia

[1] Di Barba P., Mognaschi M.E., Industrial design with multiple criteria: shape optimization of a permanent-magnet generator, IEEE Transaction on Magnetics, 2009, Vol. 45, No. 3, pp. 1482–1485.

[2] Paplicki P., The new generation of electrical machines applied in hybrid drive car, Electrical Review, 2010, Vol. 86, No. 6, pp. 101–103.

[3] May H., Pałka R., Paplicki P., Szkolny S., Wardach M., Comparative research of different structures of a permanent-magnet excited synchronous machine for electric vehicles, Electrical Review, 2012, No. 12a, pp. 53–55.

[4] Di Barba P., Mognaschi M.E., Pałka R., Paplicki P., Szkolny S., Design optimization of a permanent-magnet excited synchronous machine for electrical automobiles, International Journal of Applied Electromagnetics and Mechanics, IOS Press, 2012, Vol. 39, No. 1–4, pp. 889–895.

[5] Stumberger B., Hamler M., Trlep M., Jesenik M., Analysis of Interior Permanent Magnet Synchronous Motor Designed for Flux Weakening Operation, IEEE Transaction on Magnetics, 2001, Vol. 37, No. 5, pp. 3644–3647.

[6] Pałka R., Piotuch R., FEM based IPMSM optimization, Problem Issues – Electrical Machines, 2014, Vol. 104, No. 4, pp. 99–104.

[7] Paplicki P., Piotuch R., Improved Control System of PM Machine with Extended Field Control Capability for EV Drive, Mechatronics-Ideas for Industrial Application, Springer, part. I, 2015, Vol. 317, pp. 125–132.

[8] Putek P., Paplicki P., Pałka R., Topology optimization of rotor poles in a permanent- magnet machine using level set method and continuum design sensitivity analysis, CO MPEL , Vol. 33, Issue 3, pp. 711–728.

[9] Putek P., Slodička M., Paplicki P., Pałka R., Minimization of cogging torque in permanent magnet machines using the topological gradient and adjoint sensitivity in multi-objective design, International Journal of Applied Electromagnetics and Mechanics, 2012, Vol. 39, No. 1–4, pp. 933–940.

[10] Putek P., Paplicki P., Slodička M., Pałka R., Van Keer R., Application of topological gradient and continuum sensitivity analysis to the multi-objective design optimization of a permanent-magnet excited synchronous machine, Electrical Review, 2012, Vol. 88, No. 7a, pp. 256–260.

[11] Caramia R., Piotuch R., Pałka R., Multiobjective FEM based optimization of BLDC motor using Matlab and Maxwell scripting capabilities, Archives of Electrical Engineering, 2014, Vol. 63(1), pp. 115–124.

[12] Putek P., Paplicki P., Pałka R., Low Cogging Torque Design of Permanent Magnet Machine Using Modified Multi-Level Set Method With Total Variation Regularization, IEEE Transaction on Magnetics, 2014, Vol. 50, No. 2, pp. 657–660.

[13] Paplicki P., Design optimization of the electrically controlled permanent magnet excited synchronous machine to improve flux control range, Electronika ir electrotechnika, 2014, Vol. 20, No. 10.

[14] Deb K., Pratap A., Agarwal S., Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions On Evolutionary Computation, April 2002, Vol. 6, No. 2.

[15] Shchur I., Rusek A., Simulation modelling of synchronous motor with permanent magnets on the base of results of field research, Problem Issues – Electrical Machines, 2013, Vol. 93, No. 3, pp. 189–195.

Informacje

Informacje: Czasopismo Techniczne, 2015, Elektrotechnika Zeszyt 1-E (8) 2015, s. 353-362

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Polski:

IPMSM with SMCrotor – optimization and experimental results

Angielski:

IPMSM with SMCrotor – optimization and experimental results

Autorzy

Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin

Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin

Publikacja: 16.12.2015

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Rafał Piotuch (Autor) - 50%
Ryszard Pałka (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski

Liczba wyświetleń: 1950

Liczba pobrań: 1313

<p> IPMSM with SMCrotor – optimization and experimental results</p>

IPMSM with SMCrotor – optimization and experimental results

cytuj

Pobierz PDF Pobierz

pobierz pliki

RIS BIB ENDNOTE