FAQ

Assessment of propagation of modelling uncertainty by the procedures for determining maximum dynamic errors

Data publikacji: 27.12.2017

Czasopismo Techniczne, 2017, Volume 12 Year 2017 (114), s. 157 - 169

https://doi.org/10.4467/2353737XCT.17.216.7759

Autorzy

,
Krzysztof Tomczyk
Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology
Wszystkie publikacje autora →
Marek Sieja
Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology
https://orcid.org/0000-0001-8229-0598 Orcid
Wszystkie publikacje autora →

Tytuły

Assessment of propagation of modelling uncertainty by the procedures for determining maximum dynamic errors

Abstrakt

W artykule omówiono metodę modelowania w dziedzinie czasu liniowych systemów analogowych drugiego rzędu. Jako wynik takiego modelowania uzyskano parametry modelu oraz związane z nimi niepewności. Przedstawiono procedury wyznaczania maksymalnych błędów dynamicznych dla przypadku kryteriów błędu: bezwzględnego i całkowokwadratowego. Procedury te pozwalają w sposób precyzyjny określić taki sygnał wejściowego z jednym ograniczeniem, który maksymalizuje błąd na wyjściu systemu. Wyznaczono wartości parametrów przykładowego modelu oraz oceniono propagację niepewności wyników modelowania przez procedury wyznaczania maksymalnych błędów dynamicznych. Wyniki obliczeń przedstawionych w artykule przeprowadzono w programie MathCad15.

Bibliografia

[1] Kollar I., On Frequency-Domain Identification of Linear Systems, IEEE Transactions on Instrumentation and Measurement, Vol. 42, Issue 1, 1993, 2–6.
[2] Ljung L., Some results on identifying linear systems using frequency domain data, Proc. 32nd. IEEE Conf. Decis. Control, San Antonio, 1993, 3534–3538.
[3] Guillaume P., Frequency Response Measurements of Multivariable Systems using Nonlinear Averaging Techniques, IEEE Transactions on Instrumentation and Measurement, Vol. 47, Issue 3, 1998, 796–800.
[4] Pintelon R., Schoukens J., System identification: A Frequency Domain Approach, IEEE Press, Piscataway, New York 2001.
[5] Isermann R., Münchhof M., Identification of Dynamic Systems, Springer-Verlag, Berlin Heidelberg, Dordrecht, London, New York 2010.
[6] Tomczyk K., Sieja M., Parametric Identification of System Model for the Charge Output Accelerometer, Technical Transactions 2-E/2015, 235–245.
[7] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method, 2008.
[8] Assambo C., Determination of the Parameters of the Skin-Electrode Impedance Model for ECG Measurement. Proceedings of the 6-th WSEAS Int. Conf. on Electronics. Hardware, Wireless and Optical Communications, 2007, 90–95.
[9] Tomczyk K., Procedure for Correction of the ECG Signal Error Introduced by Skin-Electrode Interface, Metrology and Measurement Systems, Vol. XVIII, No. 3, 2011, 461–470.
[10] Rutland N.K., The Principle of Matching: Practical Conditions for Systems with Inputs Restricted in Magnitude and Rate of Change, IEEE Transaction on Automatic Control, Vol. 39, 1994, 550–553.
[11] Layer E., Non-standard Input Signals for the Calibration and Optimisation of the Measuring Systems, Measurement, Vol. 34, 2003, 179–186.
[12] Layer E., Tomczyk K., Measurements. Modelling and Simulation of Dynamic Systems, Springer-Verlag. Berlin Heidelberg, 2010.
[13] Layer E., Tomczyk K., Determination of Non-Standard Input Signal Maximizing the Absolute Error. Metrology and Measurement Systems, Vol. 17, 2009, 199–208.
[14] Tomczyk K., Impact of Uncertainties in Accelerometer Modelling on the Maximum Values of Absolute Dynamic Error. Measurement, Vol. 49, 2016, 71–78.
[15] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML 2011. Supplement 2 to the Guide to the Expression of Uncertainty in Measurement, Extension to any number of output quantities JCGM 102:2011.
[16] Kubisa S., Intuicja i symulacja Monte Carlo Podstawa Analizy Niedokładnosci Pomiarow, PAK, No. 9, 2007, 3–8.
[17] Wyner A.,, Spectra of Bounded Functions in Open Problems in Communication and Computation, T.M. Cover and B. Gopinath, Eds. Springer Verlag, New York 1987, 46–48.
[18] Honig M.L., Steiglitz K., Maximizing the Output Energy of a Linear Channel with a Time and Amplitude Limited Input, IEEE Transaction on Information Theory, Vol. 38, No. 3, 1992, 1041–1052.
[19] NI 622x Specifications, National Instruments, ref. 372190G-01, jun. 2007
http://www.ni.com/datasheet/pdf/en/ds-15

Informacje

Informacje: Czasopismo Techniczne, 2017, Volume 12 Year 2017 (114), s. 157 - 169

Typ artykułu: Oryginalny artykuł naukowy

Tytuły:

Polski:

Assessment of propagation of modelling uncertainty by the procedures for determining maximum dynamic errors

Angielski:

Assessment of propagation of modelling uncertainty by the procedures for determining maximum dynamic errors

Autorzy

Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology

https://orcid.org/0000-0001-8229-0598

Marek Sieja
Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology
https://orcid.org/0000-0001-8229-0598 Orcid
Wszystkie publikacje autora →

Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology

Publikacja: 27.12.2017

Status artykułu: Otwarte __T_UNLOCK

Licencja: Żadna

Udział procentowy autorów:

Krzysztof Tomczyk (Autor) - 50%
Marek Sieja (Autor) - 50%

Korekty artykułu:

-

Języki publikacji:

Angielski