FAQ
logo of Jagiellonian University in Krakow

The Finite Termination Property of an Algorithm for Solving the Minimum Circumscribed Ball Problem

Publication date: 20.12.2012

Schedae Informaticae, 2012, Volume 21, pp. 127 - 139

https://doi.org/10.4467/20838476SI.12.008.0818

Authors

,
Andreas Gläser
University of Applied Sciences Zwickau, Zwickau, Germany
Dresden University of Technology, Dresden, Saxony, Germany
All publications →
,
Christian Grossmann
Dresden University of Technology, Dresden, Saxony, Germany
All publications →
Ulrich Lunze
University of Applied Sciences Zwickau, Zwickau, Germany
All publications →

Titles

The Finite Termination Property of an Algorithm for Solving the Minimum Circumscribed Ball Problem

Abstract

In this paper basic mathematical tasks of coordinate measurement are briefly described and a modi ed optimization algorithm is proposed. Coordinate measurement devices generate huge data set and require adapted methods to solve related mathematical problems in real time. The proposed algorithm possesses a simpli ed step size rule and nds the solution of the minimum circumscribed ball fi tting after only a nite number The iteration is of the steepest descent type applied to the related distance function. But, in contrast to standard algorithms it uses a modi ed step size rule that takes into account the speci c properties of the occurring objective function. This small di erence in the code improves the performance of the algorithm and it enables real time use of the proposed method in coordinate measurement machines. The eciency of the prosed algorithm will be illustrated by some typical examples.
 

References

Anthony G.T., Bittner B., Butler B.P., Cox M.G., Drieschner R., Elligsen R., Forbes A.B., Gross H., Hannaby S.A., Harris P.M., Kok J.; Chebyshev reference software for the evaluation of coordinate measureing machine data, NPL Teddington { UK, PTB Braunschweig { Germany, CWI Amsterdam { Netherlands, 1993.

ASME Y14.5-2009; Dimensioning and Tolerancing, American Society and Mechanical Engineers, 2009.

Bobrow J.E.; A Direct Minimization Approach for Obtaining the Distance between Convex Polyhedra, Int. J. of Robotics Res. 11, 1992, p. 5.

BS 7172; British Standard guide to assessment of position, size and departure from nominal form of geometric feature.

Christoph R., Neumann H.J.; Multisensor-Koordinatenmesstechnik, sv corporate media, 2006.

Dem'janov W.F., Malozemov W.N.; Introduction to Minimax, Dover Publication, New York 1990.

Grossmann C., Kaplan A.A.; Strafmethoden und modizierte Lagrange Funktionen in der nichtlinearen Optimierung, Teubner, Leipzig 1979.

Grossmann C., Kleinmichel H., Vetters K.; Minimaxprobleme und nichtlineare Op- timierung, Math. Meth. OR 20, 1976, pp. 23{38.

Goch G., Lubke K.; Tschebysche approximation for the calculation of maximum inscribed/minimum circumscribed geometry elements and form deviations, CIRP Annals { Manufacturing Technology 57 I. 1, 2008, pp. 517{520.

Hadrich M.; Ein Verfahren zur Tschebysche-Approximation von Formelementen der Koordinatenmesstechnik, Measurement, vol. 12, 2004, pp. 337{344.

ISO 1101; Geometrical product specication (GPS) - geometrical tolerating - tolerating of form, direction, position und run, Beuth Verlag, Berlin 2006.

Koch W., Lotze W., Lunze U.; Paarungslehrung nach dem Taylorschen Grundsatz durch nichtlineare Optimierung { Praxiseinsatz in der modernen Fertigungstechnik, QZ Qualitat und Zuverlassigkeit 36(4), 1991, pp. 219-224.

Lotze W.; General solution for Tsebyshev approximation of forn elements in coor- dinate measurement, Measurement 12, 1994, pp. 337{344.

The MultiSensor; The International Newsletter of Werth Messtechnik. http://www.werth.de/en/navigation/werth-newsletter.html

Spath H., Watson G.A.; Smallest circlumscribed, largest inscribed and minimum zone circle or sphere via sequential linear programming, Math. Comm. 6, 2001, pp. 29{38.

Information

Information: Schedae Informaticae, 2012, Volume 21, pp. 127 - 139

Article type: Original article

Titles:

Polish:

The Finite Termination Property of an Algorithm for Solving the Minimum Circumscribed Ball Problem

English:

The Finite Termination Property of an Algorithm for Solving the Minimum Circumscribed Ball Problem

Authors

University of Applied Sciences Zwickau, Zwickau, Germany

Dresden University of Technology, Dresden, Saxony, Germany

Dresden University of Technology, Dresden, Saxony, Germany

University of Applied Sciences Zwickau, Zwickau, Germany

Published at: 20.12.2012

Article status: Open

Licence: None

Percentage share of authors:

Andreas Gläser (Author) - 33%
Christian Grossmann (Author) - 33%
Ulrich Lunze (Author) - 34%

Article corrections:

-

Publication languages:

English