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Andreas Gläser1,2, Christian Grossmann1, Ulrich Lunze2

1Institut für Numerische Mathematik,
Technische Universität Dresden,

D-01062 Dresden, Germany

2Institut für Produktionstechnik,
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Abstract. In this paper basic mathematical tasks of coordinate measure-

ment are briefly described and a modified optimization algorithm is proposed.

Coordinate measurement devices generate huge data set and require adapted

methods to solve related mathematical problems in real time. The proposed

algorithm possesses a simplified step size rule and finds the solution of the

minimum circumscribed ball fitting after only a finite number The iteration

is of the steepest descent type applied to the related distance function. But,

in contrast to standard algorithms it uses a modified step size rule that takes

into account the specific properties of the occurring objective function. This

small difference in the code improves the performance of the algorithm and

it enables real time use of the proposed method in coordinate measurement

machines. The efficiency of the prosed algorithm will be illustrated by some

typical examples.
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1. Introduction

The monitoring of production processes requires to compare the manufactured work
piece with its original design. This design, as a rule, bases upon a technical drawing
or a CAD-model which uses simple geometrical elements like circles, balls, lines,
planes and cylinders. Coordinate measuring machine (CMM), described e.g. in
[5, 14], scan essential parts of the work piece and generate a huge number of m data
points pi ∈ Rn, n = 2 (planar case) or n = 3 (spatial case), i = 1, ...,m (m very
large). The data points obtained from the measurements have to be converted into
some simplified model that could be finally compared with the design parameters.
The mathematical task is to find the parameters of these geometrical objects that fit
the data points in an appropriate sense – Gauss fitting, minimum zone (mz) fitting,
minimum circumscribed (mc) or maximum inscribed (mi). In [12] one can find a
detailed description of the variety of such models used in coordinate measurement.

The Gauss fitting e.g. consists of the minimization of the quadratic distance
from the data points to the wanted geometrical object. This is a standard smooth
nonlinear optimization problem which can be solved sufficiently accurate within
acceptably short time even for large numbers m of data.

However, often industrial standards of the coordinate measurement, like [2, 11],
require to solve non-smooth problems. One of these tasks e.g. is the minimum zone
fitting which requires to minimize the maximum of the absolute distance between the
data points and the geometrical object. Further tasks of the coordinate measurement
are the maximum inscribed and the minimum circumscribed ball problem.

These briefly sketched main tasks of the coordinate measurement lead to classical
mini–max problems, but with huge data sets and with a highly specific structure of
the objective function.

In the present paper we concentrate upon the minimum circumscribed ball prob-
lem, which is a convex mini–max problem.

Figure 1. Example of a two dimensional bolt

A two dimensional example of data points of a bolt obtained by a measuring
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machine is shown in Fig. 1.

The main requirement for data management in coordinate measurement machin-
ery is to select or develop such optimization algorithms that perform the given tasks
in real time. As already said, the simplest task is Gauss fitting. However, national
and international standards, as described e.g. in Geometrical Dimensioning and Tol-
erancing ISO 1101 [11], BS 7172 [4] and in ASME Y14.5 [2], set rules that require
also the mz-element, mi-element and mc-element. While for the Gauss fitting fast
and sufficiently exact algorithms exist, this is not so for the mc, mi and mz problems.
In [9, 15, 13] one can find some specific methods to tackle these tasks. But the given
algorithms work often do not work fast and exact enough.

Unlike the ball already the most simple geometrical objects (cylinder, line, plane)
lead to non-convex distance functions. In these cases a relaxed goal consists in
finding at least a local solution of the mini–max problems (see [8, 6]). In most of the
computed practical cases we observed that the obtained solutions were also global
ones. But, so far no clear further characterization, e.g. by geometrical position of
the data points, is known to ensure this in the general case.

There exist different possibilities to related mini-max problems to appropriate
smooth approximate problems. In [9] e.g. the Lp-norm with p >> 1 is used instead
of the maximum norm. However, the rounding errors in the computer numbers often
lead to instabilities of the related techniques.

Another approach applies penalty-barrier techniques (see e.g. [7]) to transform
the original mini–max problem into some smooth nonlinear optimization problem.
In the considered cases in coordinate measurement applications the Hessian matrix
often turned out to be non-definite because of the non-convexity. In such cases, some
additional regularization techniques could be applied to overcome this difficulty.
Such procedures were examined by the Physikalisch-Technische Bundesanstalt [1].
These algorithms often failed in case of non-convex distance functions. In certain
applications these codes find global solutions of the mini–max problem. However,
they require many iteration steps and additional adjustments which makes them
rather slowly and inaccurately working.

We have to acknowledge that the mz, mi and mc problems still require to develop
new algorithms which can handle the millions of data points produced by modern
coordinate measuring machines. Such algorithms have to make advantage of the
specific structure of the functions. The method we propose here is an attempt to
improve the efficiency of solvers for one of the mathematical problems that arise in
coordinate measurement.

2. Problem definition

Let 〈·, ·〉 : Rn × Rn → R denote some scalar product in Rn and let | · | denote the
related norm. For given data points pi ∈ Rn, i ∈ I := {1...m}, m ∈ N the minimum
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circumscribed ball fitting requires to determine the center x ∈ Rn of the ball

Br(x) := {y ∈ Rm : 〈x− y, x− y〉 ≤ r2}, }, r ≥ 0

with the minimal radius r that contains all data points pi, i ∈ I. This yields the
optimization problem

r2 → min ! subject to pi ∈ Br(x), i ∈ I, x ∈ Rn, r ≥ 0. (1)

Let us abbreviate

F (x) := max
i∈I

fi(x) with fi(x) :=
1

2

〈
pi − x, pi − x

〉
, i ∈ I. (2)

Then (1) is equivalent to

F (x)→ min ! subject to x ∈ Rn. (3)

This is a classical mini–max problem (compare [6]), but with a specific structure
of the involved functions fi . This specific structure will be exploited to construct
an algorithm that solves the problem in a finite number of steps. We notice that
(2) possesses a unique optimal solution. This follows from the boundedness and
the closedness of the level sets W (x) := {y ∈ Rn : F (y) ≤ F (x)} and of the strict
convexity of F .

As usual in mini–max optimization the problem (2) can be equivalently described
by

µ→ min! s.t. fi(x)− µ ≤ 0, i ∈ I. (4)

Let I0(x) denote the set of active constraints at the point x, i.e.

I0(x) := {i ∈ I : fi(x) = F (x)} .

Taking (4) into account we obtain the following optimality criterion.

Lemma 1. Problem (2) possesses a unique solution x̄ ∈ Rn and x̄ is a solution of
(2) if and only if

0 ∈ conv {∇fi(x̄)}i∈I0(x̄) (5)

and equivalently
x̄ ∈ conv

{
pi
}
i∈I0(x̄)

. (6)

Proof. Trivially some x̃ ∈ Rn and µ̃ exist such that

fi(x̃)− µ̃ < 0,

i.e. (x̃, µ̃) forms a Slater point and the KKT-conditions are necessary and sufficient
for optimality. Taking the structure of the problem (4) into account then the related
KKT-conditions have the form. With

∇fi(x) = x− pi

condition (5) is equivalent to (6).
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A simple property of I0(x̄) at the solution x̄ ∈ Rn is described by

Lemma 2. If {pi} contains at least two different points then card (I0(x̄)) > 1.

Proof. At least one constraint is active at the optimal x̄ solution of (1). Assume
that card (I0(x̄)) = 1, i.e. I0(x̄) = {j} with some j ∈ I. The KKT-conditions (6)
imply

x̄− pj = 0.

This yields
F (x̄) = 0 = max

i∈I
fi(x̄) ≥ F (x) ∀x ∈ Rn.

Since F (x) ≥ 0 ∀x ∈ Rn this implies F (x) ≡ 0 which cannot hold if at least two
different data points exist.

Next, we study the local behavior of F . As the maximum of a finite number
of smooth function at any x ∈ Rn we obtain the steepest descent direction
(compare [6]) via the convex problem

max
i∈I0(x)

〈∇fi(x), d〉 → min! s.t. 〈d, d〉 ≤ 1. (7)

To guarantee the finite termination property of our later described algorithm we
assume that the direction finding problem (7) can solved exactly by some finite
method. An appropriate technique is described later.

Remark 1. There exist various algorithms (cf. [6, 8]) to solve the optimization
problem (7). We notice that the Lagrange dual problem of (7) is just to find the
shortest distance to a closed convex polyhedron. We refer e.g. to [3] for algorithms
to solve problems of this type.

In the case x 6= x̄, i.e. if x is not the solution of (2), we have |d̄| = 1 and

F (x+ αd̄) < F (x) for α > 0, sufficiently small.

Now we study the behavior of the function F at the point x̂ = x+ αd̄. Let denote

δ := max
i∈I0(x)

〈
∇fi(x), d̄

〉
< 0 (8)

and let α > 0 be sufficient small. Further denote

δ̂ := max
i∈I0(x)

〈
∇fi(x̂), d̄

〉
= max
i∈I0(x)

〈
∇fi(x+ αd̄), d̄

〉
. (9)

The property ∇fi(x+ αd) = ∇fi(x) + αd implies

δ̂ = max
i∈I0(x)

〈
∇fi(x), d̄

〉
+ α

〈
d̄, d̄
〉 〈d̄,d̄〉=1

= δ + α > δ. (10)

For sufficiently small step sizes α > 0 holds

I0(x+ αd̄) ⊆ I0(x)

and we obtain
max

i∈I0(x+αd̄)

〈
∇fi(x+ αd̄), d̄

〉
= δ + α (11)

(compare (9),(10)).
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Lemma 3. Let x 6= x̄, let d̄ be the related solution of (7) and chose the step size

α = −δ,

where δ is defined by (7). Further let

I0(x+ αd̄) ⊆ I0(x), (12)

i.e. no new constraints become active, then is x̄ := x+ αd̄ the solution of (2).

Proof. With (12) we have

fj(x+ αd̄) < max
i∈I0(x)

fi(x+ αd̄) ∀j ∈ I \ I0(x).

We use now (10) and obtain

δ̂ := max
i∈I0(x)

〈
∇fi(x+ αd̄), d̄

〉
= δ + α = 0

and (11) implies
0 ∈ conv{∇fi(x+ αd̄)}i∈I0(x+αd̄).

We notice that
ỹ := x− δd̄ (13)

is the unique solution of the optimization problem

FI0(x)(y) := max
i∈I0(x)

fi(y)→ min!

Next, we study the behavior of the functions fi for i ∈ I \ I0(x). In particular we
are interested which of the indices of I \ I0(x) cannot be contained the new index
set I0(x+ αd̄).

Lemma 4. Let x ∈ Rn, let d̄ be the related solution of (7) and consider indices
which satisfy

i ∈ I \ I0(x) and
〈
d̄,∇fi(x)

〉
≤ δ.

Then we have
i /∈ I0(x+ αd̄)

and 〈
∇fi(x+ αd̄), d̄

〉
≤ δ + α. (14)

Proof. We obtain (14) directly from (10). Let i ∈ I \ I0(x) :
〈
∇fi(x), d̄

〉
≤ δ then

the structure of F implies

F (x+ αd̄) = F (x) + α max
i∈I0(x)

〈
∇fi(x), d̄

〉
+

1

2

〈
d̄, d̄
〉
.

Now, we have

F (x+ αd̄) = F (x) + αδ + 1
2

〈
d̄, d̄
〉

> fi(x) + α
〈
∇fi(x), d̄

〉
+ 1

2

〈
d̄, d̄
〉

= fi(x+ αd̄).

(15)
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3. Algorithm

Algorithm 1 Minimum Circumscribed Ball

1: SET x0 := 1
m

∑m
i=1 p

i

2: k := 0;

3: while TRUE do

4: µk := maxi∈I fi(x
k);

5: Ik0 :=
{
i ∈ I : fi(x

k) = µk
}

;

6: SOLVE the optimization problem

maxi∈I0
〈
∇fi(xk), d

〉
→ min! s.t. 〈d, d〉 ≤ 1

such that dk is unique solution and

SET δk := maxi∈I0
〈
∇fi(xk), dk

〉
7: if dk == 0 then

8: return x̄ := xk;

9: end if

10: Jk :=
{
i ∈ I :

〈
∇fi(xk), dk

〉
> δk

}
11: if Jk == ∅ then

12: return x̄ := xk − δkdk;

13: end if

14: FIND αk > 0 such that

maxi∈Ik0 fi(x
k + αkd

k) = maxi∈Jk fi(x
k + αkd

k)

15: SET xk+1 := xk + αkd
k;

16: SET k := k + 1;

17: end while

The difference to the standard steepest descent algorithm lays in the ste size rule in
line 14. Since the considered optimization problem has the discussed simple structure
the instruction of line 14 of the algorithm is to find αk > 0 such that

F (xk) + αkδk = max
i∈Jk

fi(x
k) + αk

〈
∇fi(xk), dk

〉
. (16)

This is just a simple linear equation. We underline that in each iteration step a new
active constraint is found. So the index set Ik0 will be changed in each sweep of the
algorithm.
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Lemma 5. The Algorithm 1 is well defined and generates a sequence
{
xk
}

with
F (xk) > F (xk+1). The method terminates with the optimal solution x̄ after finite
number of steps according to the criteria on line 8 and line 12, respectively.

Proof. The property F (xk) > F (xk+1) is guaranteed by line 15 with dk as steepest
descent direction and αk > 0 according to line 14.

If xk is the solution of (2) then the algorithm terminates at line 8. Now, we turn to
the finite termination property.

Only indices i ∈ Jk ⊂ I \ Ik0 may satisfy the condition

max
i∈Ik0

fi(x
k + αkd

k) = max
i∈I\Ik0

fi(x
k + αkd

k)

(compare Lemma 4) which implies

fi(x
k + αkd

k) ≤ F (xk + αkd
k) ∀i ∈ I \ Jk.

In the case Jk = ∅ we can apply Lemma 3 and obtain −δk as the optimal step
length and x̄ := xk − δkdk (line 12) as solution of (2).

Figure 2. Illustration of the case Jk = ∅

Otherwise, according to line 14 we construct new additional active constraints
with indices i which belong to Jk. This implies that some i ∈ Jk exists with

fi(x
k + αkd

k) = F (xk + αkd
k).
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Figure 3. Illustration of the case fi(x
k + αkd

k) = F (xk + αkd
k)

Further, for some i ∈ Ik0 we have

fi(x
k + αkd

k) = F (xk + αkd
k).

This yields
Ik+1
0 6= Ik0 ∧ Ik+1

0 ⊂ Ik0 ∪ Jk.

Let denote
x̂k := xk − δkdk

as unique solution of the optimization problem

FIk0 (x)→ min!

(compare (13)) and
µk := FIk0 (x̂k) < F (x̂k).

Jk 6= ∅ implies dk+1 6= dk and x̂k 6= x̂k+1 where x̂k+1 is the unique solution of FIk+1
0

.

This leads to
FIk0 (x̂k) < FIk0 (x̂k+1)

because x̂k is unique solution of FIk0 and the active constraints from Ik0 are contained

in Ik+1
0 . The set

{
µk
}

has the property µk < µk+1 for all iteration steps k.

Then we obtain
Ik0 6= Ik+j

0 ∀j ∈ N

directly from the property of the set
{
µk
}

. The index set I consists of a finite
number of indices. Hence, there exists only a finite number of different index sets
Ik0 .
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Figure 4. Geometrical interpretation of one step of Algorithm 1

The point marked by # in Fig. 4 is the additional data point pi, i ∈ Jk with
i ∈ Ik+1

0 . The data points related to the index set Jk are marked by o, while the
black dots mark the data points with indices in the set Ik0 .

The dots with + denote the data points pi with
〈
dk,∇fi(xk)

〉
≥ δk. From Step

1 to Step 2 we can see the change from J0 to J1 and the property J1 ⊂ J0.

4. Computational experiments

The proposed algorithm for the minimum circumscribed ball problem has been tested
at different academic examples as well as in real time applications in coordinate mea-
surement machines. In particular, the finite termination property of the algorithm
guaranteed an excellent performance of the implemented code. Further, compar-
isons were done with different classical optimization codes, e.g. the MATLAB sqp-
algorithm.

Here we report results obtained for the following about three test problems:

Examples IDEAL. The data points are randomly distributed on the surface of the
ball in R3 with the given center and radius. In the reported two cases we used 1000
data points and 100000 data points, respectively.

Examples RANDOM. In these examples in R3 the data data points simulate some
typical production errors, i.e. the points are randomly distributed with a distance
from the center in a rather narrow interval. In the experiments we used [9.75, 10.25]
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and [19.75, 20.25], respectively.

Examples CIRCLE. These data points simulate some typical production errors
from a measured circle (planar example). As intervals for radius we have taken
[9.75, 10.25].

In Tab. 1 are listed the results obtained for these examples. As computational
methods methods we included Algorithm 1, the steepest descent algorithm with the
Cauchy step size (see e.g. [8]) and an SQP method (MATLAB code sqp) applied to
4. The integer k indicates the maximal number of complete sweeps of the consid-
ered algorithms. The column labeled F indicates the total number of simultaneous
calculations of all m functions fi.

Table 1. Computational results for the considered examples (I = Ideal, R = Ran-
dom, C = Circle)

Example Algorithm 1 Cauchy step size MATLAB sqp
k F calls time k F calls time k F calls time

I1000 5 13 0.016 9 281 0.047 3 33 17.76
I100000 6 15 0.389 6 182 3.479 3 33 412.36
R1000 10 27 0.019 8 421 0.063 5 51 6.08
R100000 11 39 0.842 7 346 6.257 4 42 15271.00
C500 7 19 0.008 5 284 0.095 9 93 4.16
C5000 5 13 0.156 3 166 0.139 12 121 8141.5

5. Conclusions

The finite termination property proved for Algorithm 1 and the simplified step size
rule therein makes the method as a good candidate for real time calculations as
required in modern coordinate measurement machines. The implemented code is
already included in firm ware in coordinate measurement machines.

In the considered case of the minimal circumscribed ball only points pi, i ∈ I
relate to active constraints if there lay on the boundary of the optimal ball or circle,
respectively. Since our Algorithm 1 is of active set type this implies that the number
of iteration steps depends upon the number of data points on the boundary.

The algorithm with Cauchy step size required in case of the example CIR-
CLE5000 only 3 iteration sweeps, but the line search in this algorithm resulted
in 50 additional function evaluations. As indicated above, we have included the
MATLAB code sqp into the given comparison. The related algorithm turned out
to be rather slow in case of the examples RAND100000 and CIRCLE5000. This
is caused by the required approximation of all dual variables and inclusion of all
constraints into the generated quadratic subproblems. A direct comparison of the
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cpu time is difficult since Algorithm 1 was implemented in C++. If one considers
the increase of computer time for different model sizes then the sqp code showed a
non-linear increase. The proposed Algorithm 1 does not show such an increase of
cpu time if the model size is increased.
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