FAQ
logo of Jagiellonian University in Krakow

Optimal Control of a Drying Process with Avoiding Cracks

Publication date: 20.12.2012

Schedae Informaticae, 2012, Volume 21, pp. 81 - 105

https://doi.org/10.4467/20838476SI.12.006.0816

Authors

,
Alexander Galant
Fakultät Maschinenwesen, Technische Universität Dresden 01062 Dresden, Germany
All publications →
,
Christian Grossmann
Dresden University of Technology, Dresden, Saxony, Germany
All publications →
,
Michael Scheffler
Fakultät Maschinenwesen, Technische Universität Dresden 01062 Dresden, Germany
All publications →
Jörg Wensch
All publications →

Titles

Optimal Control of a Drying Process with Avoiding Cracks

Abstract

The paper deals with the numerical treatment of the optimal control of drying of materials which may lead to cracks. The drying process is controlled by temperature, velocity and humidity of the surrounding air. The state equations de ne the humidity and temperature distribution within a simpli ed wood specimen for given controls. The elasticity equation describes the internal stresses under humidity and temperature changes. To avoid cracks these internal stresses have to be limited. The related constraints are treated by smoothed exact barrier-penalty techniques. The objective functional of the optimal control problem is of tracking type. Further it contains a quadratic regularization by an energy term for the control variables (surrounding air) and barrier-penalty terms.
The necessary optimality conditions of the auxiliary problem form a coupled system of nonlinear equations in appropriate function spaces. This optimality system is given by the state equations and the related adjoint equations, but also by an approximate projection onto the admissible set of controls by means of barrier-penalty terms. This system is discretized by nite elements and treated iteratively for given controls. The optimal control itself is performed
by quasi-Newton techniques.

References

Amann H.; Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Analysis: Theory, Methods and Applications 12, 1988, pp. 895{919.

Branke D., Kroppelin U., Scheer M., Thielsch K.; Simulationsmodell fr Holzwerksto platten unter Dierenzklimabeanspruchung, Holztechnologie 48 (1), 2007, pp. 25{29.

Casas E., Mateos M.; Uniform convergence of the FEM applications to state constrained control problems, Comput. Appl. Math. 21, 2002, pp. 67{100.

Ciegis R., Starikovi^us V.; Mathematical modelling of wood drying process, Math. Model. Anal. 7(2), 2002, pp. 177{190.

Cloutier A., Fortin Y.; A model of moisture movement in wood based on water potential and the determination of the efective water conductivity, Wood Sci. Technology 27, 1993, pp. 95{114.

Delphin, TU Dresden, Program system, Institut fur Bauklimatik.

Dushman S., Laerty J.M.; Scientic foundation of vakuum techique, Mir, Moskva 1962.

Galant A.; Mathematische Modelle zur Optimierung von Trocknungsprozessen unter Berucksichtigung von Rissbildungen, TU Dresden, Graduation thesis, 2007.

Grossmann C., Roos H.-G., Stynes, M.; Numerical treatment of partial diferential equations, Springer, Berlin 2007.

Grossmann C., Terno J.; Numerik der Optimierung, Teubner, Stuttgart 1997.

Grossmann C., Zadlo M.; A general class of penalty/barrier path-following Newton methods for nonlinear programming, Optimization 54, 2005, pp. 161{190.

Hardtke H.-J., Militzer K.-E., Fischer R., Hufenbach W.; Entwicklung und Identikation eines kontinuumsmechanischen Modells fur die numerische Simulation der Trocknung von Schnittholz, TU Dresden, (Research report DFG-project Ha 2075/3-2), 1997.

Hinze M.; A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30, 2005, pp. 45{61.

Irudayaraj J., Haghighi K., Stroshine R.L.; Nonlinear nite element analysis of coupled heat and mass transfer problems with an application to timber drying, Drying Technology 8, 1990, pp. 731{749.

Kamke F.A., Vanek M.; Review of wood drying models, In: Haslett A.N., Laytner F. (eds.); Proc. 4th Int. IUFROWood Drying Symposium. August, 1994, Rotorua, NZ For. Res. Inst., Rotorua, New Zealand, pp. 1{21.

Kayihan F., Stanish M.A.; Wood particle drying, a mathematical model with experimental evaluation, In: Mujumdar A.S. (ed.); Drying '84. Hemisphere publ. corp. New York 1984, pp. 330{347.

Koponen H.; Moisture difusion coecients of wood, In: Mujumdar A.S.; Drying '87. Hemisphere publ. corp. New York 1987, pp. 225{232.

Krecetov U.V.; Suska drevesiny, Lesnaja promyslennost, Moskva 1972.

Luikov A.V.; Heat and mass transfer in capillary-porous bodies, Pergamon Press, London 1966.

Scheer M.; Bruchmechanische Untersuchungen zur Trockenrissbildung an Laubholz, TU Dresden, Dissertation thesis, 2000.

Siau J.F.; Transport processes in wood, Springer, Berlin 1984.

Siimes F.; The efect of specic: gravity, moisture, temperature and heating time on the tension and compression strength and elasticity properties perpendicular to the grain of nnish pine spruce and birch wood and the signicance of these factors on the checking of timbers at kiln drying, State Inst. Technical Res., Finland, Publ. 84, Helsinki 1967.

Thomas H.R., Lewis, R.W., Morgan, K.; An application of the nite element method to the drying of timber, Wood Fibre 11, 1980, pp. 237{243.

Troltzsch F.; Optimal Control of Partial Diferential Equations. Theory, Methods and Applications, Amer. Math. Soc. (AMS), Providence, RI, 2010.

Vogel R.; Modellierung des Warme- und Stotransportes und des mechanischen Spannungsfeldes bei der Trocknung fester Korper am Beispiel der Schnittholztrocknung, TU Dresden, Dissertation thesis, 1989.

Welling J.; Die Erfassung von Trocknungsspannungen wahrend der Kammertrocknung von Schnittholz, Hamburg, Dissertation thesis, 1987.

Zeidler E., Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators, Springer Verlag, New York 1990.

Information

Information: Schedae Informaticae, 2012, Volume 21, pp. 81 - 105

Article type: Original article

Titles:

Polish:

Optimal Control of a Drying Process with Avoiding Cracks

English:

Optimal Control of a Drying Process with Avoiding Cracks

Authors

Fakultät Maschinenwesen, Technische Universität Dresden 01062 Dresden, Germany

Dresden University of Technology, Dresden, Saxony, Germany

Fakultät Maschinenwesen, Technische Universität Dresden 01062 Dresden, Germany

Published at: 20.12.2012

Article status: Open

Licence: None

Percentage share of authors:

Alexander Galant (Author) - 25%
Christian Grossmann (Author) - 25%
Michael Scheffler (Author) - 25%
Jörg Wensch (Author) - 25%

Article corrections:

-

Publication languages:

English

View count: 2379

Number of downloads: 1090

<p> Optimal Control of a Drying Process with Avoiding Cracks</p>