Choose format
RIS BIB ENDNOTEPublication date: 24.03.2017
Schedae Informaticae, 2016, Volume 25, pp. 25-35
https://doi.org/10.4467/20838476SI.16.002.6183Authors
[1] Burges C.J., A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2 (2), pp. 121–168.
[2] Bengio Y., Learning deep architectures for ai. Foundations and Trends in Machine Learning, 2009, 2 (1), pp. 1–127.
[3] Reynolds D., Gaussian mixture models. Encyclopedia of Biometrics, 2015, pp. 827–832.
[4] Comon P., Independent component analysis: a new concept? Signal Processing, 1994, 36 (3), pp. 287–314.
[5] Bach F.R., Jordan M.I., Kernel independent component analysis. Journal of Machine Learning Research, 2002, 3, pp. 1–48.
[6] Barshan E., Ghodsi A., Azimifar Z., Jahromi M.Z., Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recognition, 2011, 44, pp. 1357–1371.
[7] Sch¨olkopf B., Smola A., M¨uller K.R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10, pp. 1299–1319.
[8] Hofmann T., Sch¨olkopf B., Smola A.J., Kernel methods in machine learning. The Annals of Statistics, 2008, 36 (3), pp. 1171–1220.
[9] Smola A.J., Sch¨olkopf B., Learning with Kernels. MIT Press, 2002.
[10] Wang M., Sha F., Jordan M.I., Unsupervised kernel dimension reduction. Proc.of Conf. Advances in Neural Information Processing Systems, 2010, 23, pp. 2379–2387.
[11] Mika S., R¨atsch G., Scholkoph W.J., M¨uller K.R., Fisher discriminant analysis with kernels. Proc. of IEEE Conf. Neural Networks for Signal Processing, 1999, pp. 41–48.
[12] Baudat G., Anouar F., Feature vector selection and projection using kernels. Neurocomputing, 2003, 55, pp. 21–38.
[13] Song L., Smola A., Gretton A., Bedo J., Borgwardt K., Feature selection via dependence maximization. Journal of Machine Learning Research, 2012, 13, pp. 1393–1434.
[14] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011, 12, pp. 2825–2830.
[15] Little M.A., McSharry P.E., Roberts S.J., Costello D.A., Moroz I.M., Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection-6. BioMedical Engineering OnLine, 2011, 6 (1), pp. 23.
[16] Hungarian Institute of Cardiology. Budapest: Andras Janosi M.D., University Hospital Zurich, Switzerland: William Steinbrunn M.D., University Hospital Basel, Switzerland: Matthias Pfisterer M.D., V.A. Medical Center Long Beach and Cleveland Clinic Foundation:Robert Detrano M.D. Ph.D., Heart Disease Data Set. [online].
[17] Moshe L., UCI machine learning repository, 2013.
[18] Chapelle O., Vapnik V., Bousquet O., Mukherjee S., Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46 (1), pp. 131–159.
Information: Schedae Informaticae, 2016, Volume 25, pp. 25-35
Article type: Original article
Faculty of Geographical Sciences,
University of Lodz
ul. Narutowicza 65, 90-131 Łódź, Poland
Published at: 24.03.2017
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 2180
Number of downloads: 1704