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Abstract. Supervised kernel-Principal Component Analysis (S-kPCA) is a me

thod for producing discriminative feature spaces that provide nonlinear deci-

sion regions, well-suited for handling real-world problems. The presented paper

proposes a modification to the original S-kPCA concept, which is aimed at im-

proving class-separation in resulting feature spaces. This is accomplished by

identifying outliers (understood here as misclassified samples) and by an appro-

priate reformulation of the original S-kPCA problem. The proposed idea is to

replace binary class labels that are used in the original method, by real-valued

ones, derived using sample-relabeling scheme aimed at preventing potential data

classification problems. The postulated concept has been tested on three stan-

dard pattern recognition datasets. It has been shown that classification perfor-

mance in feature spaces derived using the introduced methodology improves by

4–16% with respect to the original S-kPCA method, depending on a dataset.

Keywords: pattern recognition, feature extraction, kernel methods, supervised

kernel PCA.

1. Introduction

Common attributes of datasets corresponding to hard, real-world data classification
problems are presence of outliers, complex nonlinear and multi-modal character of
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class decision boundaries, uneven representation of classes and class’ modes as well as
noise and erroneous sample labeling. These problems have to be addressed by pattern
recognition procedures that aspire to be of practical use. In fact, all well-established
pattern recognition methods that have been developed so far, such as Support Vector
Machines (SVM [1]), neural networks (especially trained using deep-learning tech-
niques [2]) or probabilistic classifiers [3], attempt to handle the aforementioned prob-
lems. Some of these methods operate on raw data, but typically they assume object
representations in carefully selected feature spaces. Therefore, feature space deriva-
tion becomes an important element of pattern recognition procedure and an enormous
amount of research has been done in this field. Appropriate feature spaces facilitate
classification process, eliminate curse of dimensionality problem, thus reducing a risk
of classifier overfitting, but also, enable new insights into intrinsic object properties,
relations and dependencies that can be revealed by an adopted representation.

A variety of feature-space derivation strategies have been proposed so far. They
emphasize various aspects of data representation that are of importance for a given
application. Criteria used for derivation of new feature spaces range from maximiza-
tion of data scatter (PCA and its nonlinear extension – kernel PCA, abbreviated
henceforth using the term kPCA), through maximization of sample independence
(Independent Component Analysis [4], and its kernelized extension [5]) to maximiza-
tion of class discrimination (Linear Discriminant Analysis along with its kernelized
version and supervised versions of PCA). Other concepts behind a search for reduced
representations of samples involve for example preservation of original data structure
(as e.g. in Multidimensional Scaling or Iso-mapping).

The presented paper is concerned with a modification of Supervised Kernel Prin-
cipal Component Analysis (S-kPCA) [6], which is a supervised extension to the kPCA
(labeled samples are considered in feature space derivation), proposed in [7]. Kernel
PCA in turn generalizes the classical PCA in such a way that the discovered maxi-
mum scatter directions become nonlinear. Properties of kPCA address several basic
requirements crucial for classification of real-world data, such as low sensitivity to
outliers or nonlinear data mapping, which is crucial for solving linearly non-separable
problems. Atop on that, S-kPCA provides features that maximize correlations be-
tween samples and their class labels, thus eliminating one of the main drawbacks of
scatter-maximization based strategies.

Despite numerous advantages, S-kPCA is clearly not an ultimate solution to the
problem of feature space derivation. For difficult datasets it fails to provide perfect
data separation and one of the reasons behind its deteriorating performance is a lack
of diversification of individual samples’ role in building new data representation. This
issue is explored in research reported in the presented paper. We postulate to diversify
significance of different samples by their appropriate relabeling, so that samples that
may potentially pose classification problems become more important. We verify this
concept on three publicly available pattern recognition datasets and we show that
significant improvement (4–16%, depending on dataset) over the original S-kPCA
approach can be obtained.

A structure of the paper is the following. We begin with a short review of related
concepts: kPCA and S-kPCA. Then we present in detail the proposed sample relabel-
ing principles and the adopted feature space derivation procedure. Finally, we provide
results of experimental evaluation of the concept, where the modified S-kPCA method
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is confronted with the original one and feature spaces derived for both approaches are
indirectly compared using classification performance results.

2. Related work

A basis for the presented research is laid out by an impressive development of kernel
methods for data classification and processing, which followed a success of the Support
Vector Classification (SVM) [8–12]. Theory of kernel methods has been expanded also
onto data preprocessing domain and several ’kernelized’ versions of well-established
concepts were formulated. These include concepts that are directly related to the
presented research: kernel Principal Component Analysis and its supervised version
S-kPCA.

Kernel Principal Component Analysis, proposed in [7], extends classical Principal
Component Analysis concept in order to identify nonlinear data scatter directions.
A concept of implicit problem-solving in high-dimensional, intermediate spaces, which
can be accomplished using kernels, provides a means for making the relevant compu-
tations feasible. An objective of kPCA is to find directions of the maximum variability
among samples xi that are projected to some high dimensional space, using a trans-
formation Φ(.) (i.e. Xi = Φ(xi)). In other words, an objective is to find eigenvectors
V = [v0,v1, ...] of the projected data covariance matrix:

(X−M)(X−M)TV = ΛV (1)

where M is a matrix of mean-valued vectors m, computed for the projections in high-
dimensional space, and Λ is a diagonal matrix of eigenvalues. As eigenvectors lie in
a subspace defined by projected samples:

vi =

n−1∑

j=0

αi
j(Xj −m) = (X−m)ai,

premultiplying the equation (1) by the term (X−M)T yields alternative formulation
of the eigenproblem:

(X−M)T (X−M)A = ΛA (2)

where A = [a0,a1, ...] comprises vectors of coefficients that become a solution to the
modified eigenproblem. Observe, that only dot products are involved in computations
of the eigenproblem (2), so they can be replaced by kernels. Introducing a Gramm
matrix, with elements Gi,j = K̂(xi,xj), where K̂ is some kernel function, centered in
high-dimensional space, one can rewrite (2) in a compact form:

GA = ΛA (3)
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A solution to (3), which can be found for reasonable amounts of samples, defines
directions of the maximum variability in a high-dimensional space and can be used
for projecting unknown samples:

(Φ(z)−m)Tvi = (Φ(z)−m)T (X−m)ai =
[
K̂(z,x0), ...K̂(z,xn−1)

]
ai (4)

As it can be seen, projections onto each eigenvector vi can be determined in the
original, low-dimensional space, using kernel operations and the computed coefficient
vectors ai.

The second concept relevant to the presented paper is a supervised version of
kPCA. The proposed idea is to use Hilbert-Schmidt Independence Criterion (HSIC)
[13] as an objective function that is to be maximized. HSIC measures a level of
cross-covariance between samples and their labels:

Cx,y = E(X−mx)(Y−my)T = E(XH)(YH)T (5)

where X is a matrix of input samples with a mean vector mx, Y is a matrix of labels,
with their mean my, and H is a centering matrix. HSIC uses a Hilbert-Schmidt norm,
which, in essence, aggregates squared entries of the cross-covariance (5). It can be
easily shown that this can be expressed as:

HSIC = k · tr(Cx,yC
T
x,y) (6)

where tr denotes the trace of a matrix and k is a scaling factor. As the criterion (6)
involves dot products, one can introduce kernels: on input samples - K = [k(xi,xj)]
and on labels - L = [l(yi,yj)], and rewrite the criterion in the form:

HSIC = k · tr(KHLH) (7)

An objective of S-kPCA procedure is to find such a transformation matrix U of
original samples x, i.e.:

x’ = Ux

which, after plugging x’ into (5) provides maximization of the criterion (7). This can
be seen as searching for such a combination of original samples that ensure data trans-
formations (through kernel functions) that maximize correlation between samples and
their labels.

3. Misclassification-driven sample relabeling

The original S-kPCA procedure is not addressing an issue of diversifying sample labels
and is not exploring its impact on discriminative properties of a resulting feature
space. By default, all class samples are treated evenly: for example, for a two-class
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problem (samples belong either to class A or class B), each sample x is labeled with
a two-element vector yi with binary entries:

∀si∈A yi =

[
1
0

]
, ∀sj∈B yj =

[
0
1

]
(8)

where A -class sample label is linked to its class by the first component of the label
vector and B-class samples, by the second component.

As the criterion (6) that underlies feature space derivation focuses on sample-
label correlation, it is evident that varying the label affects the relevant computations
and leads to a different solution. One can observe that by varying numerical label
representations one can modify sample-class correlations in several possible ways.
For the considered two-class problem, where labels are represented by two-element
vectors, one can vary any of the two entries. Moreover, one can easily interpret such
changes. An increase in a value of sample’s ’own’ label vector component (the first for
A -class samples and the second for B-class samples) makes a class-sample correlation
stronger, whereas decreasing this value - weakens the correlation. This way, one can
diversify a significance of samples in a process of constructing a novel feature space.
In addition, one can observe that a sample can be forced to negatively correlate with
the opposite class. This can be accomplished by substituting the ’zero-correlation’
component of the label vector (the second one for A -class samples and the first one for
B-class samples) with a negative value. As a result, every sample would get individual
labels that can be represented as:

∀si∈A yi =

[
api
−ani

]
, ∀sj∈B yj =

[
bpi
−bni

]
, (9)

where a.., b.. are positive real numbers and the superscripts p and n identify ’positive’
and ’negative’ correlation coefficients.

The presented concept of sample relabeling seems a viable way to modify a role
of different samples in derivation of new feature spaces. In particular, one can apply
this mechanism to increase significance of samples that are harder to be correctly
classified over significance of samples that pose no serious classification problems.

To improve discriminative properties of feature spaces derived using S-kPCA con-
cept, one needs to elaborate rules that enable reasonable sample relabeling, i.e. that
enable determining for which samples label alterations should be made and what
should be a magnitude of such an alteration. We propose to use training sample
classification results statistics as the basis for both determination of samples to be
affected and determination of amounts of label changes.

The proposed procedure has been schematically depicted in Figure 1. Original
dataset is split into two parts: training/validation and test sets. Feature space deriva-
tion is performed only on samples from the former one and begins with its random
split into temporary training and temporary test subsets. Next, the original S-kPCA
procedure, which assumes binary class labels (8) is executed on the temporary training
subset, followed by data classification performed in the derived space using Gaussian
Mixture Model (GMM) classifier. All misclassified samples are then recorded and
saved for a future use. The GMM classification method has been chosen, as it has
a little in common with the adopted kernel-based feature space derivation methodol-
ogy and can therefore be considered as an unrelated tool for feature space evaluation.
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Figure 1. Block diagram of the proposed feature space derivation procedure.

For the current split of the training set, classification is performed using a k-fold
cross validation scheme and once it is completed, the whole procedure is repeated n-
times for another n random splits of the training set into new temporary training/test
parts. After completion of this iterative procedure, misclassification percentage is de-
termined for each sample. The computed coefficients are used as a basis for sample
relabeling. Assuming that some i−th sample from a class A has been misclassified
m−times, the corresponding correction coefficient is determined:

ci = α
m

n
(10)

where α is a positive constant that controls a magnitude of label updates.

The coefficient (10) is then used to produce the ’positive’ component of the sample
label vector:

api = 1 + ci (11)

or the ’negative’ component (updates for samples from a class B are analogous):

ani = −ci (12)

Having the samples relabeled, another S-kPCA procedure is executed, producing
the resulting feature space for classification of samples from the test set. Next, clas-
sification result is recorded and the whole procedure is repeated p-times for other
random splits of the original dataset.
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Table 1. Datasets used in experiments.

Database Digits Ionosphere Pima Glass E-Coli Parkinson Heart

Classes 10 2 2 6 5 2 5
Attributes 64 34 8 10 8 23 14
Samples 1797 351 768 213 327 195 297

4. Experimental evaluation of the proposed concept

To verify the proposed concept, a series of experiments (using Python’s sckit package
[14]) on seven different pattern recognition datasets: Digits, Ionosphere, Pima Indian
Diabetes, Glass, E-coli, Parkinson’s Disease [15] and Cleveland Heart Disease [16]
(all datasets available at UCI repository [17]) were performed. Dataset highlights
are shown in Table 1. Three of these datasets correspond to binary classification
problems, so that sample labels are represented by two-element vectors, as shown in
(9). For the remaining datasets, the presented sample relabeling approach requires
only a straightforward modification: label vectors are composed of multiple entries
that get appropriately updated during the validation procedure.

Three different label alteration scenarios were considered during the experiments:

� Only positive components of sample’s label vector (i.e. api or bpi depending on
sample’s class) were being updated according to (11)

� Only negative components of sample’s label vector (i.e. ani or bni ) were being
updated according to (12)

� Both negative and positive components were modified

For each dataset, a procedure explained in the previous Section was executed. In
each case we assumed a 5-fold cross validation (k = 5), the inner loop (i.e. estimations
of misclassification rates for a given split of the original dataset) was executed 100
times (i.e. n = 100) and 100 classifications were made (p = 100) to asses an overall
classification performance for each method. Throughout all experiments, a Gaussian
kernel was used in S-kPCA procedure:

k(xi,xj) = exp
(
−γ · ||xi − xj ||2

)
(13)

where ||.|| denotes a distance between samples and γ was chosen using the grid-search
method [18].

An objective of the first phase of experiments was to compare the three adopted
sample relabeling scenarios. Classification experiments (GMM method was used for
data classification both in the validation and in the test step) were performed on the
first three databases and the results, plotted as a function of the parameter α ∈ [0..2]
(10) have been shown in Figure 2. The experiments have been summarized in Table 2.
For comparison purposes, performance evaluation of GMM classification of raw data,
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Figure 2. Average classification performance as a function of varying label update
magnitudes for all considered scenarios and datasets.

Table 2. Classification performance using Gaussian Mixture Models (in percent)
with 95% confidence intervals

Database Digits Ionosphere Pima
Raw data 76,2 ± 3.6 72.4 ± 3.2 63.9 ± 4.7
S-kPCA 85.5 ± 1.8 72.1 ± 5.3 73.3 ± 2

Scenario 1 86.7 ± 1.9 91.4 ± 2.6 72.0 ± 2
Scenario 2 87.5 ± 2.1 91.2 ± 3 72.0 ± 2.4
Scenario 3 93.2 ± 0.9 93.0 ± 2 76.0 ± 1.8

as well as GMM classification in a space derived using the original S-kPCA procedure
(for identical splits into training and test parts) were provided. One can observe that
classification in feature spaces derived using the proposed strategy outperforms the
reference methods: classification made on raw data and classification made in a space
derived using the original S-kPCA. Also, it can be seen that a combination of both
types of updates, i.e. the last scenario used for label alterations, provides the most
noticeable gain, so we consider this strategy to be the best one.

An improvement in classification performance is statistically significant for the two
datasets: Digits and Ionosphere. In case of the last dataset (Pima Indian Diabetes),
although average classification results are better than for the original S-kPCA, large
variations of individual results do not allow making any definite statement on the
proposed method’s superiority. On the other hand one can observe that Pima dataset
samples have relatively low initial dimensionality, so that dimensionality reduction in
that case may not be necessary at all.

As sample relabeling involving alterations both to positive and negative label
vector components has been found to provide the best results, this approach has
been adopted in the following experiments. This time, classification performance of
three different procedures, involving no dimensionality reduction (raw data classifi-
cation), dimensionality reduction with original S-kPCA and dimensionality reduction
with sample relabeling using the adopted third scenario, were done for all considered
datasets. GMM was used as the classification strategy in validation phase, whereas
test set samples were classified with either GMM, linear SVM and k-NN (k = 5 was
used) classifiers.
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(a)

(b)

(c)

Figure 3. Maximum classification rates for different datasets and the three con-
sidered test-set classification methods: GMM (a), 5-NN (b) and linear SVM (c).
’Relabeling’ denotes the proposed approach, ’RAW’ denotes classification of original
data and ’S-KPCA’ denotes classification with the original method.

Performance comparison results are depicted in Figure 3, where the best perform-
ing α value for each dataset (α ∈ [0.3...1.1] ) was used for sample relabeling.

A few observations can be made from the presented results. The most important
from the point of view of the proposed concept is that the proposed sample relabeling
always results in feature spaces that have better class discrimination properties than
the ones produced by the original S-kPCA. In each case, classification performance
improves, however, in several cases this improvement is not statistically significant.
Secondly, it seems that classification strategy adopted in validation phase (GMM)
implies the best improvements if the same classification strategy is used in the test
phase (differences between results obtained for the sample-relabeled and the original
S-kPCA are the most salient). Finally, performance for different datasets depends on
the adopted classification strategy.
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5. Conclusion

A strategy for improving class separation properties for feature spaces derived using
Supervised kernel Principal Component Analysis has been presented in the paper. It
has been shown that appropriate modifications to sample labels, which diversify their
significance in derivation of target space features, result in increased data classification
performance and that this gain can be substantial for some datasets. Although the
concept needs to be thoroughly verified using many other existing data sources, we
believe that the observed tendency will hold, improving significance of the S-kPCA
concept.

One needs to bear in mind, that PCA-based data recognition methods are inher-
ently computationally complex, which limits their use in time-critical applications.
This also applies to S-kPCA and to the proposed modification. On the other hand,
the considered data preprocessing offers several crucial advantages – it reveals struc-
tures that exist among data and that can be relevant for class-discrimination, reduces
a risk of classifier overfitting and reduces sensitivity to bad class examples.
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