FAQ
logo of Jagiellonian University in Krakow

SOME FRAGMENTS OF SECOND-ORDER LOGIC OVER THE REALS FOR WHICH SATISFIABILITY AND EQUIVALENCE ARE (UN)DECIDABLE

Publication date: 21.10.2014

Reports on Mathematical Logic, 2014, Number 49, pp. 23 - 34

https://doi.org/10.4467/20842589RM.14.002.2272

Authors

,
Rafael Grimson
CONICET and Escuela de Ciencia y Tecnologica, Universidad de San Marteen, Campus Miguelete (CP1650). San Martn, Provincia de Buenos Aires, Argentina
All publications →
Bart Kuijpers
Databases and Theoretical Computer Science Group, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
All publications →

Titles

SOME FRAGMENTS OF SECOND-ORDER LOGIC OVER THE REALS FOR WHICH SATISFIABILITY AND EQUIVALENCE ARE (UN)DECIDABLE

Abstract

We consider the 10-fragment of second-order logic over the vocabulary h+;; 0; 1; <; S1; :::; Ski, interpreted over the reals, where the predicate symbols Si are interpreted as semialgebraic sets. We show that, in this context, satis ability of formulas is decidable for the rst-order 9-quanti er fragment and undecidable for the 98- and 8-fragments. We also show that for these three fragments the same (un)decidability results hold for containment and equivalence of formulas.

References

[1] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic GeometryVolume 36 of Ergebenisse der Mathematik und ihrerGrenzgebiete, Folge 3, Springer-Verlag, Berlin, 1998.

[2] G. Jeronimo and J. Sabia, On the number of sets definable by polynomials, Journal Algebra 227:2 (2000), 633–644.

[3] E. B¨orger, E. Gr¨adel and Y. Gurevich, The Classical Decision Problem, Monographs in Mathematical Logic, Springer-Verlag, 2000.

[4] D. Grigoriev and N. N. (jr.) Vorobjov, Solving systems of polynomial inequalities in subexponential time, Journal ofSymbolic Computation 5 (1988), 37–64.

[5] J. P. Jones and Y. V. Matijasevich, Exponential Diophantine representation of recursively enumerable sets, In J. Stern,editor, Proceedings of the Herbrand Sym- posium: Logic Colloquium ’81, volume 107of Studies in Logic and the Foundationsof Mathematics, Amsterdam. North Holland, 1982, pp.159–177.

[6] Y. V. Matijasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993.

[7] J. Paredaens, G. Kuper and L. Libkin, editors, Constraint databases, Springer- Verlag, 2000.

[8] A. Tarski, A Decision Method for Elementary Algebra and Geometry, Universitof California Press, 1951.

Information

Information: Reports on Mathematical Logic, 2014, Number 49, pp. 23 - 34

Article type: Original article

Titles:

Polish:
SOME FRAGMENTS OF SECOND-ORDER LOGIC OVER THE REALS FOR WHICH SATISFIABILITY AND EQUIVALENCE ARE (UN)DECIDABLE
English:
SOME FRAGMENTS OF SECOND-ORDER LOGIC OVER THE REALS FOR WHICH SATISFIABILITY AND EQUIVALENCE ARE (UN)DECIDABLE

Authors

CONICET and Escuela de Ciencia y Tecnologica, Universidad de San Marteen, Campus Miguelete (CP1650). San Martn, Provincia de Buenos Aires, Argentina

Databases and Theoretical Computer Science Group, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium

Published at: 21.10.2014

Article status: Open

Licence: None

Percentage share of authors:

Rafael Grimson (Author) - 50%
Bart Kuijpers (Author) - 50%

Article corrections:

-

Publication languages:

English