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SOME FRAGMENTS OF SECOND-ORDER

LOGIC OVER THE REALS FOR WHICH

SATISFIABILITY AND EQUIVALENCE ARE

(UN)DECIDABLE

A b s t r a c t. We consider the Σ1
0-fragment of second-order logic

over the vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉, interpreted over the

reals, where the predicate symbols Si are interpreted as semi-

algebraic sets. We show that, in this context, satisfiability of

formulas is decidable for the first-order ∃∗-quantifier fragment and

undecidable for the ∃∗∀- and ∀∗-fragments. We also show that for

these three fragments the same (un)decidability results hold for

containment and equivalence of formulas.

.1 Introduction and summary

First-order logic over the vocabulary 〈+,×, 0, 1, <〉, interpreted in the struc-

ture R = (R,+,×, 0, 1, <), the ordered field of the real numbers R, has
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received considerable interest in several areas of theoretical computer sci-

ence. One particular such area is that of constraint databases, where this

logic is used as a basis for first-order query languages ([7], in particular

Chapter 2). Hereto, the vocabulary 〈+,×, 0, 1, <〉 is extended to some

vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉, where, for i ∈ {1, ..., k}, Si is a predi-

cate of arity ar(Si), which is a natural number strictly larger than 0. The

predicates S1, ..., Sk represent the input relations to a query. In the con-

straint database formalism, the predicates Si are interpreted by first-order

definable relations over 〈+,×, 0, 1, <〉, that is, by semi-algebraic subsets of

Rar(Si), i ∈ {1, ..., k} (see [1]). Since first-order logic over the reals admits

quantifier elimination [8], in constraint databases, it is assumed that the

input relations S1, ..., Sk are given by quantifier-free formulas.

First-order logic over 〈+,×, 0, 1, <, S1, ..., Sk〉 then allows the definition

of new relations by means of formulas with free variables over 〈+,×, 0,
1, <, S1, ..., Sk〉, as well as the expression of properties of the query input

relations Si by means of sentences over 〈+,×, 0, 1, <, S1, ..., Sk〉. These

newly created relations or Boolean values represent the output to a query.

For example, the first-order query formula

ϕ(x, y) = ∃ε(0 < ε ∧ ∀x′∀y′((x− x′)2 + (y − y′)2 < ε2 → S(x′, y′))),

defines the topological interior of the binary input relation S, viewed as

a subset of R2. Likewise, the sentence

ψ = ∀x∀y∃ε(0 < ε ∧ S(x, y)

→ (∀x′∀y′((x− x′)2 + (y − y′)2 < ε2 ∧ S(x′, y′)→ x = x′ ∧ y = y′)))

expresses the Boolean (topological) property that all elements of the bi-

nary input relation S are isolated points of S. When S is restricted to be

interpreted by semi-algebraic subsets of R2, this statement is equivalent to

expressing that S has finite cardinality.

From Tarski’s theorem [8], which says that first-order logic over the

reals is decidable (via quantifier elimination), we obtain, by plugging-in

quantifier-free first-order descriptions of the input relations in the query

formula and then eliminating the quantifiers from the obtained formula,

a quantifier-free first-order description of the output. This amounts to an

effective query evaluation strategy for constraint database queries of this

type.
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We can also view the above example formulas as second-order formulas

(without second-order quantifiers) over the vocabulary 〈+,×, 0, 1, <〉, if we

view S as a binary relation variable. In a second-order context, we would

write ϕ(x, y, S) and ψ(S) to indicate both the free first- and second-order

variables of these formulas. To be precise, we consider formulas in Σ1
0.

A second-order formula belongs to this syntactic fragment if its quantifiers

range only over first-order variables, although it may have free second-order

variables.

If we stick to this second-order view of query formulas, the following

definition specifies what we mean by a Σ1
0 second-order formula over the

reals being satisfiable. This definition uses the Henkin-semantics (that in-

terprets relation symbols by semi-algebraic subsets of R` rather than by

arbitrary subsets of R`, where ` is the appropriate arity), that is also used

in constraint databases [7].

Definition 1.1. We say that a formula ϕ(x1, ..., xn, S1, ..., Sk) in the

the Σ1
0-fragment of second-order logic over 〈+,×, 0, 1, <〉 with free first-

order variables x1, ..., xn and free relation variables S1, ..., Sk of arities

ar(S1), ..., ar(Sk), respectively, is satisfiable if there exist real numbers

a1, ..., an and semi-algebraic subsets A1, ..., Ak of Rar(S1), ...,Rar(Sk), re-

spectively, such that

R |= ϕ[a1, ..., an, A1, ..., An]

holds. ut

We have a similar definition of the containement and the equivalence of

two second-order formulas.

Definition 1.2. Let ϕ(x1, ..., xn, S1, ..., Sk) and ψ(x1, ..., xn, S1, ..., Sk)

be two relational second-order formulas over 〈+,×, 0, 1, <〉, which have the

same free first-order variables x1, ..., xn and the same free relation variables

S1, ..., Sk. We say that (the interpretation of) ϕ(x1, ..., xn, S1, ..., Sk) is

contained in (the interpretation of) ψ(x1, ..., xn, S1, ..., Sk) denoted ϕ(x1,

..., xn, S1, ..., Sk) ⊆ ψ(x1, ..., xn, S1, ..., Sk), if for all real numbers a1, ..., an
and all semi-algebraic subsets A1, ..., Ak of Rar(S1), ...,Rar(Sk) respectively,

we have that

R |= (ϕ→ ψ)[a1, ..., an, A1, ..., An]

holds.
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We say that ϕ(x1, ..., xn, S1, ..., Sk) and ψ(x1, ..., xn, S1, ..., Sk) are equiv-

alent, denoted

ϕ(x1, ..., xn, S1, ..., Sk) ≡ ψ(x1, ..., xn, S1, ..., Sk),

if both ϕ(x1, ..., xn, S1, ..., Sk) ⊆ ψ(x1, ..., xn, S1, ..., Sk) and ψ(x1, ..., xn,

S1, ..., Sk) ⊆ ϕ(x1, ..., xn, S1, ..., Sk) hold. ut

Clearly, the decidability of containment implies the decidability of equiv-

alence. Since finiteness of the relations S1, ..., Sk is expressible in second-

order logic over 〈+,×, 0, 1, <〉, as illustrated by the above example, Propo-

sition 2.6.4 in [7] says that, in general, satisfiability, containment and

equivalence are undecidable properties of second-order formulas over 〈+,
×, 0, 1, <〉.

In this paper, we are interested in first-order quantifier-prefix fragments

of second-order logic over 〈+,×, 0, 1, <〉, for which satisfiability, contain-

ment and equivalence are (un)decidable. By a first-order quantifier-prefix

fragment of second-order logic over 〈+,×, 0, 1, <〉, we mean a subclass of

formulas that can be written in prenex-form

Q(y1, ..., ym)ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk),

where Q(y1, ..., ym) is a sequence of first-order quantifiers—belonging to

some syntactic family—over y1, ..., ym and ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk)

is a quantifier-free second-order formula over 〈+,×, 0, 1, <〉, with free first-

order variables y1, ..., ym, x1, ..., xn and the free relation variables S1, ..., Sk.

Again, in such classes of formulas, relation variables are not quantified.

The three last lines of the following table summarize the (un)decidability

results of this paper. For completeness, we have added, in the first line of

the table, the known results concerning conjunctive formulas in the ∃∗-
fragment (that is, conjunctions of possibly negated atomic formulas—see

Chapter 2 of [7]).

We remark that a substantial differences with the classical decision

problem [3], is that we consider a logic in which certain functions, rela-

tions and constants (+,×, <, 0, 1) have a fixed interpretation in the reals

and for which the remaining predicate symbols are also restricted to range
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quantifier-prefix satisfiability containment equivalence

∃∗(conjunctive) decidable[7] decidable [7] decidable [7]

∃∗ decidable (FMP1) undecidable undecidable

∃∗∀ undecidable undecidable undecidable

∀∗ undecidable undecidable undecidable

over semi-algebraic sets. It is not clear if other results concerning the clas-

sical decision problem can be carried over to our setting of the reals.

This paper is organized as follows. We give, in Section 2, an elementary

proof that satisfiability is decidable for the ∃∗-fragment of the Σ1
0-fragment

of second-order logic over 〈+,×, 0, 1, <〉. We show, in particular, that in

case of satisfiability, the predicates S1, ..., Sk can be interpreted by finite

sets. In Section 3, we show that satisfiability is undecidable for the ∃∗∀-
fragment of second-order logic over 〈+,×, 0, 1, <〉 and in Section 4, we show

the same for the ∀∗-sentences. In Section 5, we show the results in the above

table for containment and equivalence.

.2 For the ∃∗-fragment satisfiability is decidable

It is known that satisfiability, containment and equivalence of conjunctive

formulas, i.e., conjunctions of possibly negated atomic formulas preceded

by a first-order ∃∗-prefix, in the Σ1
0-fragment of second-order logic over the

vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉 are decidable [7, Chapter 2]. We first

show that this is no longer the case if also disjunctions are allowed.

In this section, we prove the following result. Although this result is

already known [7, Chapter 2], we provide an elementary proof and also

give a complexity result.

Theorem 2.1. For the (first-order) ∃∗-quantifier fragment of the Σ1
0-

fragment of second-order logic over the vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉,
satisfiability is decidable. Furthermore, in case of satisfiability, the relations

S1, ..., Sk may be interpreted by finite sets. Our decision procedure requires

exponential time in the length of the formula.

1Finite model property: in case of satisfiability, the relations may be interpreted by

finite sets.
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Proof. We remark that it is sufficient to prove the theorem for any

quantifier-free formula of the Σ1
0-fragment of second-order logic over the

vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉. Let ϕ(x1, ..., xn) be such a quantifier-

free formula over 〈+,×, 0, 1, <, S1, ..., Sk〉. We can write ϕ(x1, ..., xn) in

disjunctive normal form as

d∨
i=1

ϕi(x1, ..., xn), (1)

for some d ∈ N \ {0} (N denotes the set of natural numbers), where for

i ∈ {1, ..., d}, ϕi(x1, ..., xn) has the form

k∧
j=1

(

pij∧
r=1

Sj(uijr) ∧
qij∧
s=1

¬Sj(vijs)) ∧
pi∧
j=1

Pij(x1, ..., xn) θij 0, (2)

where pij , qij , pi ∈ N and Pij(x1, ..., xn) are polynomials in the variables

x1, ..., xn with integer coefficients, with θij ∈ {<,>,≤,≥} and where uijr

and vijs are ar(Sj)-tuples of terms over the vocabulary 〈+,×, 0, 1, <〉 with

variables from x1, ..., xn.

Clearly, ϕ(x1, ..., xn) is satisfiable if and only if ϕi(x1, ..., xn) is satisfi-

able for some i ∈ {1, ..., d}.

Notation: In the following we denote by uijr[a1, ..., an] the ar(Sj)-tuple

that has as `-th component, for ` ∈ {1, ..., ar(Sj)}, the `-th term of uijr

with the variables x1, ..., xn instantiated to a1, ..., an.

To the formulas ϕi(x1, ..., xn), for i ∈ {1, ..., d}, written in this normal

form, we associate a formula

ψi(x1, ..., xn) :=
k∧

j=1

(

pij∧
r=1

qij∧
s=1

uijr 6= vijs) ∧
pi∧
j=1

Pij(x1, ..., xn) θij 0,

where for vectors of terms t = (t1, .., tN ), s = (s1, ..., sN ), t 6= s abbreviates

the formula ∨Ni=1¬(ti = si).

Claim: The formula ϕi(x1, ..., xn) is satisfiable if and only if the first-order

quantifier-free formula ψi(x1, ..., xn) is satisfiable.

Proof of the claim: For the only-if direction, assume that ϕi(x1, ..., xn) is

satisfiable. This means that there exists real numbers a1, ..., an and 〈+,



SATISFIABILITY AND EQUIVALENCE FOR 2ND ORDER LOGIC OVER THE REALS 29

×, 0, 1, <〉-definable relations A1, ..., Ak such that R |= ϕi[a1, ..., an, A1, ...,

Ak]. Therefore, for all j ∈ {1, ..., k}, r ∈ {1, ..., pij} and s ∈ {1, ..., qij}
we have uijr[a1, ..., an] ∈ Aj and vijs[a1, ..., an] 6∈ Aj . Then it follows that

for any i, r and s, uijr[a1, ..., an] = vijs[a1, ..., an] is impossible. Since

Pij(a1, ..., an) θij 0, for all j ∈ {1, ..., pi} this implication is proven.

For the if-direction, the satisfiability of ψi(x1, ..., xn) implies that there

exists real numbers a1, ..., an such that R |= ψi[a1, ..., an]. Since any non-

empty semi-algebraic set contains points with real algebraic coordinates,

we may assume that a1, ..., an are real algebraic numbers. Let

Aj := {uijr[a1, ..., an] | r ∈ {1, ..., pij}},

for j ∈ {1, ..., k}. We remark that, being finite sets of points with real

algebraic coordinates, these Aj are first-order definable over 〈+,×, 0, 1, <〉.
Then, R |= ϕi[a1, ..., an, A1, ..., Ak] because for all j ∈ {1, ..., k} and r ∈
{1, ..., pij}, uijr[a1, ..., an] ∈ Aj per definition of Aj and vijs[a1, ..., an] 6∈ Aj ,

for all s ∈ {1, ..., qij} , because vijs[a1, ..., an] differs from all uijr[a1, ..., an]

for r ∈ {1, ..., pij}. Also Pij(a1, ..., an) θij 0, for all j ∈ {1, ..., pi} remains

true. This concludes the proof of the claim.

From the claim it is immediately clear that satisfiability of formulas in

the ∃∗-fragment of the Σ1
0-fragment of second-order logic 〈+,×, 0, 1, <, S1,

..., Sk〉 is decidable. Indeed, given a quantifier-free formula

ϕ(x1, ..., xn) = ∨di=1ϕi(x1, ..., xn)

in this fragment, the formula

ψ(x1, ..., xn) = ∨di=1ψi(x1, ..., xn)

is created and satisfiability of this formula adds up to deciding the truth

of the 〈+,×, 0, 1, <〉-sentence ∃x1 · · · ∃xnψ(x1, ..., xn), which is possible be-

cause of the decidability of first-order logic over the reals (for example, via

quantifier elimination), first proven by Tarski [8].

From the proof of the claim above, it is also clear that, in case of

satisfiability, the semi-algebraic sets Aj := {uijr[a1, ..., an] | r ∈ {1, ..., pij}}
are finite.

For what concerns the complexity of the decision procedure, we remark

that it might take exponential time and space to put the original formula in
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the disjunctive normal form given by Equations (1) and (2) [2]. Afterwards,

the procedure described by Grigoriev and Vorobjov [4] to decide emptiness

of semi-algebraic sets described by first-order formulas can be applied to

the formulas ψi, for i ∈ {1, ..., d}. This last step is simply exponential in

the number of variables of the formula. Since the number of variables of

the original formula is not increased in the transformation to the normal

form, we obtain that the whole decision procedure for an arbitrary input

formula of length L can be performed within LLO(1)
-time, that is, within

exponential time. This finishes the proof. ut

.3 For the ∃∗∀-fragment satisfiability is undecidable

In this section, we prove the following result.

Theorem 3.1. For the ∃∗∀-fragment of the Σ1
0-fragment of second-

order logic over 〈+,×, 0, 1, <, S1, ..., Sk〉 satisfiability is undecidable.

First we give a lemma.

Lemma 3.2. Let S be unary predicate symbol. Then the 〈+,×, 0, 1, <,
S〉-formula

I(S) := ∀x(S(0) ∧ (x < 1 ∧ S(x)→ x = 0) ∧ (x ≥ 1 ∧ S(x)→ S(x− 1)))

expresses that S is an initial segment of N.

Proof. If A = {0, 1, ..., n} for some n ∈ N, then 0 ∈ A and x < 1 and

x ∈ A imply x = 0 and x ≥ 1 and x ∈ A imply x− 1 ∈ A.

On the other hand if R |= I[A], then 0 ∈ A and no other x < 1 is in A.

Suppose x ≥ 1 belongs to A. We can write x = bxc+ r, with bxc ∈ N \ {0}
and 0 ≤ r < 1. If we assume 0 < r, then also x − 1, x − 2, ..., x − bxc = r

belong to A, which is impossible. If r = 0, then x ∈ N\{0} and this implies

that also 1, 2, ..., x ∈ A. Therefore A = {0}, A is an initial segment of N

or A = N. Since a discrete semi-algebraic subset of R is finite, the above

argument implies that A is an initial segment of N. ut

Proof of Theorem 3.1. Suppose that, for the sake of contradiction,

satisfiability of ∃∗∀-formulas is decidable. Let P (x1, ..., x9) be a polynomial

in Z[x1, ..., x9] (here Z denotes the set of integers).
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Claim: The 〈+,×, 0, 1, <, S〉-formula

HP (x1, ..., x9, S) := I(S) ∧
9∧

i=1

S(xi) ∧ P (x1, ..., x9) = 0

is satisfiable if and only if P (x1, ..., x9) = 0 has a solution in N9.

Proof of the claim: If HP (x1, ..., x9, S) is satisfiable, there exists an A ⊂ R

that satisfies I(S) and there exist a1, ..., a9 ∈ A such that P (a1, ..., a9) = 0.

By Lemma 3.2, A is an initial segment of N and a1, ..., a9 are therefore

natural numbers that satisfy P (a1, ..., a9) = 0.

On the other hand, if P (x1, ..., x9) = 0 has a solution (a1, ..., a9) ∈ N9,

then we set A = {0, 1, ...,max{a1, ..., a9}} and observe that R |= (I(S) ∧
∧9i=1S(xi) ∧ P (x1, ..., x9) = 0)[a1, .., a9, A] because a1, ..., a9 belong to A.

This proves the claim.

Since Hilbert’s 10th problem is undecidable for polynomials in 9 vari-

ables [5, 6], by the claim, satisfiability of the formula HP (x1, ..., x9, S),

which can be rewritten into a formula

∀x(S(0) ∧ (x < 1 ∧ S(x)→ x = 0) ∧ (x > 1 ∧ S(x)→ S(x− 1)) ∧
9∧

i=1

S(xi) ∧ P (x1, ..., x9) = 0)

of the ∃∗∀-fragment of the Σ1
0-fragment of second-order logic over 〈+,×, 0,

1, <, S〉, must be undecidable. ut

.4 For ∀∗-sentences satisfiability is undecidable

Theorem 4.1. For ∀∗-sentences of the Σ1
0-fragment of second-order

logic over 〈+,×, 0, 1, <, S1, ..., Sk〉, satisfiability is undecidable.

Proof. Suppose that, for the sake of contradiction, satisfiability of

∀∗-formulas is decidable. Let P (x1, ..., x9) be a polynomial in Z[x1, ..., x9].

Consider the sentence

∀x1 · · · ∀x9

(
9∧

i=1

(Si(0) ∧ (xi < 1 ∧ Si(xi)→ xi = 0)
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∧(xi ≥ 1 ∧ Si(xi)→ Si(xi − 1)))∧(
9∧

i=1

(Si(xi) ∧ ¬Si(xi + 1))→ P (x1, ..., x9) = 0

))
.

By Lemma 3.2, the sentences on the first two lines of this formula

express that the Si are initial segments of N. The last line states that their

maxima are a solution of the equation P (x1, ..., x9) = 0. Therefore, this

formula is satisfiable if and only if there are natural numbers (the maxima

of the Si) that satisfy the equation P (x1, ..., x9) = 0, which contradicts

again the fact that Hilbert’s 10th problem is undecidable for polynomials

in 9 variables [5, 6]. ut

We remark that the previous proof changes the proof of Theorem 3.1

in that the existential quantifiers that express the existence of a solution of

the equation P (x1, ..., x9) = 0 have been moved to the existence of the sets

S1, ..., S9.

We also remark, that instead of using 9 unary relation names we could

use one binary relation S(x, y) in which x runs from 1 to 9, and for which

for each of these x-values, the y values give an initial segment of N.

.5 Undecidability results for equivalence

The results of the two previous sections have some corollaries concerning

the decidability of equivalence of formulas. It is well-known that contain-

ment and equivalence of formulas in the Σ1
0-fragment of second-order logic

over the vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉 are undecidable [7, Chapter 2].

It is also known that containment and equivalence of conjunctive formu-

las (that is, conjunctions of possibly negated atomic formulas preceded by

a first-order ∃∗-prefix) in this logic 〈+,×, 0, 1, <, S1, ..., Sk〉 are decidable [7,

Chapter 2]. Here, we show that this is no longer the case if also disjunctions

are allowed.

Corollary 5.1. For the ∃∗-fragment of the Σ1
0-fragment of second-order

logic over the vocabulary 〈+,×, 0, 1, <, S1, ..., Sk〉 equivalence, and hence

containment, are undecidable.

Proof. Obviously, the undecidability of equivalence implies the unde-

cidability of containment. Assume, for the sake of contradiction, that equiv-
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alence of formulas in the ∃∗-fragment of the Σ1
0-fragment of 〈+,×, 0, 1, <,

S1, ..., Sk〉 is decidable. We show that it follows that satisfiabiliy of formu-

las in the ∃∗∀∗-fragment of the Σ1
0-fragment of second-order logic over 〈+,

×, 0, 1, <, S1, ..., Sk〉 is decidable, which contradicts Theorems 3.1 and 4.1.

Indeed, let ∀y1 · · · ∀ymϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) be a formula in the

∃∗∀∗-fragment, with ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) quantifier-free. It is

clear from the definitions that ∀y1 · · · ∀ymϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk)

is not satisfiable if and only if ¬ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk) is equiva-

lent to the formula 0 = 0 (true). Since, ¬ϕ(y1, ..., ym, x1, ..., xn, S1, ..., Sk)

belongs to the ∃∗-fragment, this finishes the proof. ut

Corollary 5.2. For the ∃∗∀-fragment , the ∃∗∀∗-fragment and for the

∀∗-sentences of the Σ1
0-fragment of second-order logic over 〈+,×, 0, 1, <, S1,

..., Sk〉 equivalence, and hence containment, are undecidable.

Proof. First, assume, for the sake of contradiction, that equivalence of

formulas in the ∃∗∀-fragment of of the Σ1
0-fragment of second-order logic

over 〈+,×, 0, 1, <, S1, ..., Sk〉 is decidable. We show that it follows that sat-

isfiabiliy of ∃∗∀-fragment of the Σ1
0-fragment of second-order logic over 〈+,

×, 0, 1, <, S1, ..., Sk〉 is decidable, which contradicts Theorem 3.1. Indeed,

let ∀yϕ(y, x1, ..., xn) be a formula, with ϕ(y, x1, ..., xn) quantifier-free. It

is clear from the definitions that that ∀yϕ(y, x1, ..., xn) is not satisfiable

if and only if ∀yϕ(y, x1, ..., xn) ≡ 0 < 0. This finishes the proof for the

∃∗∀-fragment.

For the ∃∗∀∗-fragment and for ∀∗-sentences, the proof is similar (now

contradicting Theorem 4.1), since for a sentence ∀x1 · · · ∀xnϕ(x1, ..., xn), we

have that ∀x1 · · · ∀xnϕ(x1, ..., xn) is not satisfiable if and only if

∀x1 · · · ∀xnϕ(x1, ..., xn) ≡ 0 < 0. This finishes the proof. ut
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