FAQ
logo of Jagiellonian University in Krakow

Jankov-style Formulas and Refutation Systems

Publication date: 26.11.2013

Reports on Mathematical Logic, 2013, Number 48, pp. 67 - 80

https://doi.org/10.4467/20842589RM.13.003.1255

Authors

Alex Citkin
Metropolitan Telecommunications, New York, USA
All publications →

Titles

Jankov-style Formulas and Refutation Systems

Abstract

The paper studies the logics which algebraic semantics comprises of the Hilbert algebras endowed with additional operations - the regular algebras. With any finite subdirectly irreducible regular algebra one can associate a Jankov formula. In its turn, the Jankov formulas can be used as anti-axioms for a refutation system. It is proven that a logic has a complete refutation system based on Jankov formulas if and only if this logic enjoys finite model property. Also, such a refutation system is finite, that is, it contains a finite number of axioms and anti-axioms, if and and only if the logic is tabular.

References

[1] W. J. Blok and D. Pigozzi,On the structure of varieties with equationally definable principal congruences. III, Algebra Universalis 32:4 (1994), pp. 545–608. 
[2] W. J. Blok and Don Pigozzi, On the structure of varieties with equationally definable principal congruences. IV, Algebra Universalis 31:1 (1994), pp. 1–35. 
[3] A. Diego, Sur les alg`ebres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Math´ematique, S´er. A, Fasc. XXI. Gauthier-Villars, Paris, 1966. 
[4] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at substructural logics, volume 151 of Studies in Logic and the Foundations of Mathematics, Elsevier B. V., Amsterdam, 2007. 
[5] G. Gr¨atzer, Universal algebra, Springer, New York, second edition, 2008. With appendices by Gr¨atzer, Bjarni J´onsson, Walter Taylor, Robert W. Quackenbush, G¨unter H. Wenzel, and Gr¨atzer and W. A. Lampe. 
[6] V. A. Jankov, On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures, Dokl. Akad. Nauk SSSR 151 (1963), pp. 1293–1294. 
[7] V. A. Jankov, Conjunctively irresolvable formulae in propositional calculi, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), pp. 18–38. 
[8] Jan Lukasiewicz, On the intuitionistic theory of deduction, Nederl. Akad. Wetensch. Proc. Ser. A.55 = Indagationes Math., 14 (1952), pp. 202–212. 
[9] H. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam, 1974. 
[10] T. Skura. Refutation calculi for certain intermediate logics, Notre Dame Journal of Formal Logic 33:4 (1992), pp. 552–560. 
[11] T. Skura, Aspects of Refutation Procedures in the Intuitionistic Logic and Related Modal Systems, Acta Universitatis Wratislaviensis N 2190, Wroclaw, 1998. 
[12] T. Skura. Syntactic refutations against finite models in modal logic, Notre Dame J. Formal Logic 35:4 (1994), pp. 595–605. 
[13] W. Staszek, On proofs of rejection, Studia Logica 29 (1971), pp. 17–25. 
[14] W. Staszek, A certain interpretation of the theory of rejected propositions, Studia Logica 30 (1972), pp. 147–152.

Information

Information: Reports on Mathematical Logic, 2013, Number 48, pp. 67 - 80

Article type: Original article

Titles:

Polish:

Jankov-style Formulas and Refutation Systems

English:

Jankov-style Formulas and Refutation Systems

Authors

Metropolitan Telecommunications, New York, USA

Published at: 26.11.2013

Article status: Open

Licence: None

Percentage share of authors:

Alex Citkin (Author) - 100%

Article corrections:

-

Publication languages:

English

View count: 2124

Number of downloads: 1034

<p> Jankov-style Formulas and Refutation Systems</p>