FAQ

Use of microorganisms, insects, plants and soil in criminological research

Publication date: 26.03.2024

Problems of Forensic Sciences, 2023, 135, pp. 217 - 237

https://doi.org/10.4467/12307483PFS.23.013.19429

Authors

,
Irena B. Padzińska-Pruszyńska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0003-0784-8066 Orcid
All publications →
,
Jacek J. Pruszyński
Centrum Medyczne Kształcenia Podyplomowego
https://orcid.org/0000-0003-2123-6488 Orcid
All publications →
,
Małgorzata Górczak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0001-5383-6096 Orcid
All publications →
,
Anna Smolarska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0001-6995-6316 Orcid
All publications →
,
Małgorzata Kubiak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0001-5002-8245 Orcid
All publications →
,
Paulina Kucharzewska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0002-4698-2551 Orcid
All publications →
,
Jacek Szeliga
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0002-5924-1488 Orcid
All publications →
,
Bartłomiej Taciak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0003-2623-4860 Orcid
All publications →
,
Lidia Florczak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0002-2121-5169 Orcid
All publications →
,
Paulina Siedlecka
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0009-6914-5973 Orcid
All publications →
,
Maria Lewkowicz
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0007-1702-3371 Orcid
All publications →
,
Karolina Dylewska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0006-9971-5744 Orcid
All publications →
,
Natalia Pawłasek
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0005-7684-6218 Orcid
All publications →
,
Andrzej Kieliszak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0001-7084-1679 Orcid
All publications →
Magdalena Król
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0003-0421-5167 Orcid
All publications →

Titles

Use of microorganisms, insects, plants and soil in criminological research

Abstract

The expectation of effective detection of perpetrators of crimes is fundamental for every person, given their deep-seated need to feel safe. In the context of modern realities, it is difficult to imagine effective activities of the police, prosecutor’s office or judiciary without the use of advanced, reliable forensic techniques. The aim of this publication was to collect and present highlights of the evolution in forensic research based on a variety of scientific specializations, including forensic microbiology, forensic entomology, forensic botany, and soil science.

References

1. Alexander, M. B., Hodges, T. K., Bytheway, J., Aitkenhead-Peterson, J. A. (2015). Application of soil in forensic science: residual odor and HRD dogs. Forensic Science International249, 304–313. https://doi.org/10.1016/J.FORSCIINT.2015.01.025

2. Alexander, M. B., Hodges, T. K., Wescott, D. J., Aitkenhead-Peterson, J. A. (2016). The effects of soil texture on the ability of human remains detection dogs to detect buried human remains. Journal of Forensic Sciences61(3), 649–655. https://doi.org/10.1111/1556-4029.13084

3. Alotaibi, S. S., Sayed, S. M., Alosaimi, M., Alharthi, R., Banjar, A., Abdulqader, N., Alhamed, R. (2020). Pollen molecular biology: applications in the forensic palynology and future prospects: a review. Saudi Journal of Biological Sciences27(5), 1185–1190. https://doi.org/10.1016/J.SJBS.2020.02.019

4. Aquila, I., Ausania, F., Di Nunzio, C., Serra, A., Boca, S., Capelli, A., Magni, P. Ricci, P. (2014). The role of forensic botany in crime scene investigation: case report and review of literature. Journal of Forensic Sciences59(3), 820–824. https://doi.org/10.1111/1556-4029.12401

5. Bachliński, R. (2021). Badania gleb, wyrobów kamieniarskich i skał– wybrane przypadki opinii wykonywanych w Centralnym Laboratorium Kryminalistycznym Policji w Warszawie. Problemy Kryminalistyki311(1), 21–34.

6. Bajerlein, D., Wojterska, M., Grewling, Ł., Kokociński, M. (2015). Botanika sądowa – stan wiedzy i możliwości zastosowania w praktyce śledczej. Problemy Kryminalistyki, 289, 20–32.

7. Bass, B. (2012). Trupia Farma. Sekrety legendarnego laboratorium sądowego, gdzie zmarli opowiadają swoje historie. Kraków: Wydawnictwo Znak.

8. Benninger, L. A., Carter, D. O., Forbes, S. L. (2008). The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International180(2–3), 70–75. https://doi.org/10.1016/J.FORSCIINT.2008.07.001

9. Bidwell, C. A., Murch, R. (2016). Use of microbial forensics in the Middle East/North Africa Region. Federation of American Scientists.

10. Burcham, Z. M., Hood, J. A., Pechal, J. L., Krausz, K. L., Bose, J. L., Schmidt, C. J., Benbow M. E., Jordan, H. R. (2016). Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Science International264, 63–69. https://doi.org/10.1016/J.FORSCIINT.2016.03.019

11. Burton, J. P., Wescombe, P. A., Moore, C. J., Chilcott, C. N., Tagg, J. R. (2006). Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Applied and Environmental Microbiology72(4), 3050–3053. https://doi.org/10.1128/AEM.72.4.3050-3053.2006

12. Bush, L. M., Perez, M. T. (2012). The anthrax attacks 10 years later. Annals of Internal Medicine156(1 Pt 1), 41–44. https://doi.org/10.7326/0003-4819-155-12-201112200-00373

13. Caccianiga, M., Bottacin, S., Cattaneo, C. (2012). Vegetation dynamics as a tool for detecting clandestine graves. Journal of Forensic Sciences57(4), 983–988. https://doi.org/10.1111/J.1556-4029.2012.02071.X

14. Caccianiga, M., Caccia, G., Mazzarelli, D., Salsarola, D., Poppa, P., Gaudio, D., Cappella, A., Franceschetti, L., Tambuzzi, S., Maggioni, L., Cattaneo, C. (2021). Common and much less common scenarios in which botany is crucial for forensic pathologist and anthropologists: a series of eight case studies. International Journal of Legal Medicine135(3), 1067–1077. https://doi.org/10.1007/S00414-020-02456-0

15. Campobasso, C. P., Linville, J. G., Wells, J. D., Introna, F. (2005). Forensic genetic analysis of insect gut contents. American Journal of Forensic Medicine and Pathology26(2), 161–165. https://doi.org/10.1097/01.PAF.0000163832.05939.59

16. Carter, D. O., Yellowlees, D., Tibbett, M. (2007). Cadaver decomposition in terrestrial ecosystems. Die Naturwissenschaften94(1), 12–24. https://doi.org/10.1007/S00114-006-0159-1

17. Carter, D. O., Yellowlees, D., Tibbett, M. (2008). Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Applied Soil Ecology40(1), 129–137. https://doi.org/10.1016/J.APSOIL.2008.03.010

18. Cieśla, J., Skrobisz, J., Niciński, B., Kloc, M., Mazur, K., Pałasz, A., Javan, G. T., Tomsia, M. (2023). The smell of death. State-of-the-art and future research directions. Frontiers in Microbiology14https://doi.org/10.3389/FMICB.2023.1260869

19. Cobaugh, K. L., Schaeffer, S. M., DeBruyn, J. M. (2015). Functional and structural succession of soil microbial communities below decomposing human cadavers. PloS One10(6). https://doi.org/10.1371/JOURNAL.PONE.0130201

20. Czepiel-Mil, K., Los, A., Marczewska, P. (2015). Entomotoksykologia jako narzędzie w rozwiązywaniu zagadek kryminalnych. Medycyna Weterynaryjna71(8), 522–527.

21. D’Argenio, V., Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta; International Journal of Clinical Chemistry451(Pt A), 97–102. https://doi.org/10.1016/J.CCA.2015.01.003

22. Dalva, M., Moore, T. R., Kalacska, M., Leblanc, G., Costopoulos, A. (2015). Nitrous oxide, methane and carbon dioxide dynamics from experimental pig graves. Forensic Science International247, 41–47. https://doi.org/10.1016/J.FORSCIINT.2014.12.002

23. Dell’Annunziata, F., Martora, F., Pepa, M. E. Della, Folliero, V., Luongo, L., Bocelli, S., Guida, F., Mascolo, P., Campobasso, C. P., Maione, S., Franci, G., Galdiero, M. (2022). Postmortem interval assessment by MALDI-TOF mass spectrometry analysis in murine cadavers. Journal of Applied Microbiology132(1), 707–714. https://doi.org/10.1111/JAM.15210

24. Enserink, M. (2017). Amsterdam to host Europe’s first “forensic cemetery.” Sciencehttps://doi.org/10.1126/SCIENCE.AAL0637

25. Forbes, S. L., Perrault, K. A., Stefanuto, P. H., Nizio, K. D., Focant, J. F. (2014). Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PloS One9(11). https://doi.org/10.1371/JOURNAL.PONE.0113681

26. Franceschetti, L., Amadasi, A., Bugelli, V., Bolsi, G., Tsokos, M. (2023). Estimation of late postmortem interval: where do we stand? A literature review. Biology12(6), 783. https://doi.org/10.3390/BIOLOGY12060783

27. Franceschetti, L., Pradelli, J., Tuccia, F., Giordani, G., Cattaneo, C., Vanin, S. (2021). Comparison of accumulated degree-days and entomological approaches in post mortem interval estimation. Insects12(3). https://doi.org/10.3390/INSECTS12030264

28. Frątczak-Łagiewska, K. (2016). Metody oceny wieku śladów entomologicznych. Problemy Kryminalistyki293(3), 22–27.

29. Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science312(5778), 1355. https://doi.org/10.1126/SCIENCE.1124234

30. Global study on homicide. (2019). Division for policy analysis and public affairs. United nations office on drugs and crime. Vienna. Austria.

31. Gunn, A., Pitt, S. J. (2012). Microbes as forensic indicators. Tropical Biomedicine29(3), 311–330.

32. Harrison, L., Kooienga, E., Speights, C., Tomberlin, J., Lashley, M., Barton, B., Jordan, H. (2020). Microbial succession from a subsequent secondary death event following mass mortality. BMC Microbiology20(1). https://doi.org/10.1186/S12866-020-01969-3

33. Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature486(7402), 207–214. https://doi.org/10.1038/NATURE11234

34. Johnson, H. R., Trinidad, D. D., Guzman, S., Khan, Z., Parziale, J. V., DeBruyn, J. M., Lents, N. H. (2016). A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PloS One11(12). https://doi.org/10.1371/JOURNAL.PONE.0167370

35. Jung, J. Y., Yoon, H. K., An, S., Lee, J. W., Ahn, E. R., Kim, Y. J., Park, H. C., Lee K., Hwang J. H., Lim, S. K. (2018). Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Scientific Reports8(1), 10852. https://doi.org/10.1038/S41598-018-29264-2

36. Kaplan, J. B., Fine, D. H. (2002). Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Applied and Environmental Microbiology68(10), 4943. https://doi.org/10.1128/AEM.68.10.4943-4950.2002

37. Lee, C. L., Huang, Y. H., Hsu, I. C., Lee, H. C. (2019). Evaluation of plant seed DNA and botanical evidence for potential forensic applications. Forensic Sciences Research5(1), 55–63. https://doi.org/10.1080/20961790.2019.1594599

38. Lerner, A., Shor, Y., Vinokurov, A., Okon, Y., Jurkevitch, E. (2006). Can denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16s rDNA of soil bacterial populations be used in forensic investigations? Soil Biology and Biochemistry38(6), 1188–1192.

39. Lisiecka, M. (2019). Pyłki i zarodniki – niedoceniane narzędzia kryminalistyczne? Możliwości palinologii kryminalistycznej. Zeszyty Prawnicze19(4), 125–151. https://doi.org/10.21697/ZP.2019.19.4.06

40. Lucci, A., Campobasso, C. P., Cirnelli, A., Lorenzini, G. (2008). A promising microbiological test for the diagnosis of drowning. Forensic Science International182(1–3), 20–26. https://doi.org/10.1016/J.FORSCIINT.2008.09.004

41. Maslow, A. H. (1943). A theory of human motivation. Psychological Review50, 370–396.

42. Matuszewski, S., Szpila, K. (2010). Katalog owadów przydatnych do ustalenia czasu śmierci w lasach Polski. Problemy Kryminalistyki268, 5–17, 26–38.

43. Metcalf, J. L., Parfrey, L. W., Gonzalez, A., Lauber, C. L., Knights, D., Ackermann, G., Humphrey, G. C., Gebert, M. J., Van Treuren, W., Berg-Lyons, D., Keepers, K., Guo, Y., Bullard, J., Fierer, N., Carter D. O., Knight, R. (2013). A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. ELife2013(2). https://doi.org/10.7554/ELIFE.01104.001

44. Mona, S., Jawad, M., Noreen, S., Ali, S., Rakha, A. (2019). Forensic entomology: a comprehensive review. Advancements in Life Sciences6(2), 48–59.

45. Mostafa, M., Sabri, D. M., Aly, S. M. (2015). Overviews of “next-generation sequencing”. Forensic Medical Science, 5–6. https://doi.org/10.2147/RRFMS.S57998

46. Oh, J., Byrd, A. L., Park, M., Kong, H. H., Segre, J. A. (2016). Temporal stability of the human skin microbiome. Cell165(4), 854–866. https://doi.org/10.1016/J.CELL.2016.04.008

47. Okahashi, N., Nakata, M., Terao, Y., Isoda, R., Sakurai, A., Sumitomo, T., Yamaguchi, M., Kimura, R. K., Oiki, E., Kawabata, S., Ooshima, T. (2011). Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microbial Pathogenesis50(3–4), 148–154. https://doi.org/10.1016/J.MICPATH.2011.01.005

48. Oliveira, M., Amorim, A. (2018). Microbial forensics: new breakthroughs and future prospects. Applied Microbiology and Biotechnology102(24), 10377–10391. https://doi.org/10.1007/S00253-018-9414-6

49. Panasiuk, A., Kowalińska, J. (2019). Mikrobiota przewodu pokarmowego. Warszawa: PZWL Wydawnictwo Lekarskie.

50. Paneto, G. G., Longo, L. V. G., Martins, J. A., De Camargo, M. A., Costa, J. C., De Mello, A. C. O., Chen, B., Oliviera, R. N., Hirata, M. H., Cicarelli, R. M. B. (2010). Heteroplasmy in hair: study of mitochondrial DNA third hypervariable region in hair and blood samples. Journal of Forensic Sciences55(3), 715–718. https://doi.org/10.1111/J.1556-4029.2010.01339.X

51. Pasternak, Z., Al-Ashhab, A., Gatica, J., Gafny, R., Avraham, S., Minz, D., Gillor, O., Jurkevitch, E. (2013). Spatial and temporal biogeography of soil microbial communities in Arid and Semiarid regions. PLoS ONE8(7), 69705. https://doi.org/10.1371/JOURNAL.PONE.0069705

52. Pechal, J. L., Crippen, T. L., Benbow, M. E., Tarone, A. M., Dowd, S., Tomberlin, J. K. (2014). The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. International Journal of Legal Medicine128(1), 193–205. https://doi.org/10.1007/S00414-013-0872-1

53. Pechal, J. L., Crippen, T. L., Tarone, A. M., Lewis, A. J., Tomberlin, J. K., Benbow, M. E. (2013). Microbial community functional change during vertebrate carrion decomposition. PloS One8(11). https://doi.org/10.1371/JOURNAL.PONE.0079035

54. Price, E. P., Seymour, M. L., Sarovich, D. S., Latham, J., Wolken, S. R., Mason, J., Vincent, G., Drees, K. P., Beckstrom-Sternberg, S. M., Phillippy, A. M., Koren, S., Okinaka, R., T., Chung, W. K., Schupp, J. M., Wagner, D. M., Vipond, R., Foster, J. T., Bergman, N. H., Burans, J., Pearson, T., Brooks, T., Keim, A. P. (2012). Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerging Infectious Diseases18(8), 1307–1313. https://doi.org/10.3201/EID1808.111343

55. Quality of life indicators –economic security and physical safety –Statistics Explained. (2023). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Quality_of_life_indicators_-_economic_security_and_physical_safety

56. Robinson, J. M., Pasternak, Z., Mason, C. E., Elhaik, E. (2021). Forensic applications of microbiomics: a review. Frontiers in Microbiology11https://doi.org/10.3389/FMICB.2020.608101

57. Sanachai, A., Katekeaw, S., Lomthaisong, K. (2016). Forensic soil investigation from the 16S rDNA profiles of soil bacteria obtained by denaturing gradient gel electrophoresis. Chiang Mai Journal of Science54(8), 1964–1974.

58. Schmedes, S. E., Sajantila, A., Budowle, B. (2016). Expansion of microbial forensics. Journal of Clinical Microbiology54(8), 1964–1974. https://doi.org/10.1128/JCM.00046-16

59. Schmedes, S. E., Woerner, A. E., Novroski, N. M. M., Wendt, F. R., King, J. L., Stephens, K. M., Budowle, B. (2018). Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification. Forensic Science International. Genetics32, 50–61. https://doi.org/10.1016/J.FSIGEN.2017.10.004

60. Sidorova, N. A., Popov, V. L., Lavrukova, O. S., Prikhod’Ko, A. N., Lyabzina, S. N., Tikhomirova, E. I. (2017). [The specific features of corpse putrification under the influence of necrobiome enzymatic systems]. Sudebno-Meditsinskaia Ekspertiza60(5), 18–22. https://doi.org/10.17116/SUDMED201760518-22

61. Silván-Cárdenas, J. L., Caccavari-Garza, A., Quinto-Sánchez, M. E., Madrigal-Gómez, J. M., Coronado-Juárez, E., Quiroz-Suarez, D. (2021). Assessing optical remote sensing for grave detection. Forensic Science International329https://doi.org/10.1016/J.FORSCIINT.2021.111064

62. Singh, S., Ashikin, N., Abdullah, B., Carbaugh, J., Heo, C. C. (2020). Ants associated with a rat carcass: its implications in forensic entomology with special emphasis on Carebara diversa (Hymenoptera: Formicidae). International Journal of Tropical Insect Science40(3). https://doi.org/10.1007/s42690-020-00110-1

63. Sitthiwong, N., Ruangyuttikarn, W., Vongvivach, S., Peerapornpisal, Y. (2014). Detection and identification of diatoms in tissue samples of drowning victims. Chiang Mai Journal of Science41(5.1), 1020–1031.

64. Skowronek, R., Tomsia, M., Droździok, K., Kabiesz, J. (2014). Insects feeding on cadavers as an alternative source of human genetic material. Archiwum Medycyny Sądowej i Kryminologii64(4), 254–267. https://doi.org/10.5114/AMSIK.2014.50530

65. Skowronek, R. (2012). Wykorzystanie entomologii w kryminalistyce i medycynie sądowej. Problemy Środowiska i Jego Ochrony20, 115–137.

66. Skowronek, R., Chowaniec, C. (2010). Polska entomologia sądowa – rys historyczny, stan obecny i perspektywy na przyszłość. Archiwum Medycyny Sądowej i Kryminologii60, 55–58.

67. Sontakke, S., Cadenas, M. B., Maggi, R. G., Diniz, P. P. V. P., Breitschwerdt, E. B. (2009). Use of broad range16S rDNA PCR in clinical microbiology. Journal of Microbiological Methods76(3), 217–225. https://doi.org/10.1016/J.MIMET.2008.11.002

68. Spitaleri, S., Romano, C., Luise, E. Di, Ginestra, E., Saravo, L. (2006). Genotyping of human DNA recovered from mosquitoes found on a crime scene. International Congress Series1288(6), 574–576. https://doi.org/10.1016/j.ics.2005.11.055

69. Szelecz, I., Koenig, I., Seppey, C. V. W., Le Bayon, R. C., Mitchell, E. A. D. (2018). Soil chemistry changes beneath decomposing cadavers over a one-year period. Forensic Science International286, 155–165. https://doi.org/10.1016/J.FORSCIINT.2018.02.031

70. Teo, C. H., Pawita, A. H., Khairul, O., Atiah Ayunni, A. G., Noor Hazfalinda, H.. (2013). Post mortem changes in relation to different types of clothing. The Malaysian Journal of Pathology35(1), 77–85.

71. Tuccia, F., Zurgani, E., Bortolini, S., Vanin, S. (2019). Experimental evaluation on the applicability of necrobiome analysis in forensic veterinary science. MicrobiologyOpen8(9). https://doi.org/10.1002/MBO3.828

72. Ursell, L. K., Metcalf, J. L., Parfrey, L. W., Knight, R. (2012). Defining the human microbiome. Nutrition Reviews70(Suppl 1), S38. https://doi.org/10.1111/J.1753-4887.2012.00493.X

73. Virtanen, V., Korpelainen, H., Kostamo, K. (2007). Forensic botany: usability of bryophyte material in forensic studies. Forensic Science International172(2–3), 161–163. https://doi.org/10.1016/J.FORSCIINT.2006.11.012

74. von der Lühe, B., Dawson, L. A., Mayes, R. W., Forbes, S. L., Fiedler, S. (2013). Investigation of sterols as potential biomarkers for the detection of pig (S. s. domesticus) decomposition fluid in soils. Forensic Science International230(1–3), 68–73. https://doi.org/10.1016/J.FORSCIINT.2013.03.030

75. Wang, M., Chu, J., Wang, Y., Li, F., Liao, M., Shi, H., Zhang, Y., Hu, G., Wang, J. (2019). Forensic entomology application in China: four case reports. Journal of Forensic and Legal Medicine63, 40–47. https://doi.org/10.1016/J.JFLM.2019.03.001

76. Watson, C. J., Forbes, S. L. (2008). Investigation of the vegetation associated with grave sites in southern Ontario. Canadian Society of Forensic Science Journal41(4), 199–207.

77. Weithmann, S., von Hoermann, C., Degasperi, G., Brandt, K., Steiger, S., Ayasse, M. (2021). Temporal variability of the rove beetle (Coleoptera: Staphylinidae) community on small vertebrate carrion and its potential use for forensic entomology. Forensic Science International323https://doi.org/10.1016/J.FORSCIINT.2021.110792

78. Wells, J. D., Stevens, J. R. (2008). Application of DNAbased methods in forensic entomology. Annual Review of Entomology53, 103–120. https://doi.org/10.1146/ANNUREV.ENTO.52.110405.091423

79. Wescott, D. J. (2018). Recent advances in forensic anthropology: decomposition research. Forensic Sciences Research3(4), 327. https://doi.org/10.1080/20961790.2018.1488571

80. Wójcik, J., Tomsia, M., Drzewiecki, A., Skowronek, R. (2021). Thanatomicrobiome –state of the art and future directions. Advancements of Microbiology60(1), 21–29. https://doi.org/10.21307/PM-2021.60.1.03

81. Zabójstwo – Statystyka – Portal polskiej Policji (2021). https://statystyka.policja.pl/st/przestepstwa-ogolem/przestepstwa-kryminalne/zabojstwo/64003,Zabojstwo.html

82. Zehner, R., Amendt, J., Krettek, R. (2004). STR typing of human DNA from fly larvae fed on decomposing bodies. Journal of Forensic Sciences49(2), 1–4. https://doi.org/10.1520/JFS2003248

Information

Information: Problems of Forensic Sciences, 2023, 135, pp. 217 - 237

Article type: Original article

Titles:

Polish:

Use of microorganisms, insects, plants and soil in criminological research

English:

Use of microorganisms, insects, plants and soil in criminological research

Authors

https://orcid.org/0000-0003-0784-8066

Irena B. Padzińska-Pruszyńska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0003-0784-8066 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0003-2123-6488

Jacek J. Pruszyński
Centrum Medyczne Kształcenia Podyplomowego
https://orcid.org/0000-0003-2123-6488 Orcid
All publications →

Centrum Medyczne Kształcenia Podyplomowego

https://orcid.org/0000-0001-5383-6096

Małgorzata Górczak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0001-5383-6096 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0001-6995-6316

Anna Smolarska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0001-6995-6316 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0001-5002-8245

Małgorzata Kubiak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0001-5002-8245 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0002-4698-2551

Paulina Kucharzewska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0002-4698-2551 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0002-5924-1488

Jacek Szeliga
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0002-5924-1488 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0003-2623-4860

Bartłomiej Taciak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0003-2623-4860 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0009-0002-2121-5169

Lidia Florczak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0002-2121-5169 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0009-0009-6914-5973

Paulina Siedlecka
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0009-6914-5973 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0009-0007-1702-3371

Maria Lewkowicz
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0007-1702-3371 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0009-0006-9971-5744

Karolina Dylewska
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0006-9971-5744 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0009-0005-7684-6218

Natalia Pawłasek
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0005-7684-6218 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0009-0001-7084-1679

Andrzej Kieliszak
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0009-0001-7084-1679 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

https://orcid.org/0000-0003-0421-5167

Magdalena Król
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
https://orcid.org/0000-0003-0421-5167 Orcid
All publications →

Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland

Published at: 26.03.2024

Received at: 20.09.2023

Accepted at: 27.11.2023

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Irena B. Padzińska-Pruszyńska (Author) - 6.67%
Jacek J. Pruszyński (Author) - 6.67%
Małgorzata Górczak (Author) - 6.67%
Anna Smolarska (Author) - 6.67%
Małgorzata Kubiak (Author) - 6.67%
Paulina Kucharzewska (Author) - 6.67%
Jacek Szeliga (Author) - 6.67%
Bartłomiej Taciak (Author) - 6.67%
Lidia Florczak (Author) - 6.67%
Paulina Siedlecka (Author) - 6.67%
Maria Lewkowicz (Author) - 6.67%
Karolina Dylewska (Author) - 6.67%
Natalia Pawłasek (Author) - 6.67%
Andrzej Kieliszak (Author) - 6.67%
Magdalena Król (Author) - 6.67%

Article corrections:

-

Publication languages:

English, Polish

Suggested citations: Vancouver

Padzińska-Pruszyńska I, Pruszyński J, Górczak M, Smolarska A, Kubiak M, Kucharzewska P, Szeliga J, Taciak B, Florczak L, Siedlecka P, Lewkowicz M, Dylewska K, Pawłasek N, Kieliszak A, Król M. Use of microorganisms, insects, plants and soil in criminological research. Problems of Forensic Sciences. 2024;2023 (135): 217-237