Use of microorganisms, insects, plants and soil in criminological research
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEUse of microorganisms, insects, plants and soil in criminological research
Publication date: 26.03.2024
Problems of Forensic Sciences, 2023, 135, pp. 217 - 237
https://doi.org/10.4467/12307483PFS.23.013.19429Authors
Use of microorganisms, insects, plants and soil in criminological research
The expectation of effective detection of perpetrators of crimes is fundamental for every person, given their deep-seated need to feel safe. In the context of modern realities, it is difficult to imagine effective activities of the police, prosecutor’s office or judiciary without the use of advanced, reliable forensic techniques. The aim of this publication was to collect and present highlights of the evolution in forensic research based on a variety of scientific specializations, including forensic microbiology, forensic entomology, forensic botany, and soil science.
1. Alexander, M. B., Hodges, T. K., Bytheway, J., Aitkenhead-Peterson, J. A. (2015). Application of soil in forensic science: residual odor and HRD dogs. Forensic Science International, 249, 304–313. https://doi.org/10.1016/J.FORSCIINT.2015.01.025
2. Alexander, M. B., Hodges, T. K., Wescott, D. J., Aitkenhead-Peterson, J. A. (2016). The effects of soil texture on the ability of human remains detection dogs to detect buried human remains. Journal of Forensic Sciences, 61(3), 649–655. https://doi.org/10.1111/1556-4029.13084
3. Alotaibi, S. S., Sayed, S. M., Alosaimi, M., Alharthi, R., Banjar, A., Abdulqader, N., Alhamed, R. (2020). Pollen molecular biology: applications in the forensic palynology and future prospects: a review. Saudi Journal of Biological Sciences, 27(5), 1185–1190. https://doi.org/10.1016/J.SJBS.2020.02.019
4. Aquila, I., Ausania, F., Di Nunzio, C., Serra, A., Boca, S., Capelli, A., Magni, P. Ricci, P. (2014). The role of forensic botany in crime scene investigation: case report and review of literature. Journal of Forensic Sciences, 59(3), 820–824. https://doi.org/10.1111/1556-4029.12401
5. Bachliński, R. (2021). Badania gleb, wyrobów kamieniarskich i skał– wybrane przypadki opinii wykonywanych w Centralnym Laboratorium Kryminalistycznym Policji w Warszawie. Problemy Kryminalistyki, 311(1), 21–34.
6. Bajerlein, D., Wojterska, M., Grewling, Ł., Kokociński, M. (2015). Botanika sądowa – stan wiedzy i możliwości zastosowania w praktyce śledczej. Problemy Kryminalistyki, 289, 20–32.
7. Bass, B. (2012). Trupia Farma. Sekrety legendarnego laboratorium sądowego, gdzie zmarli opowiadają swoje historie. Kraków: Wydawnictwo Znak.
8. Benninger, L. A., Carter, D. O., Forbes, S. L. (2008). The biochemical alteration of soil beneath a decomposing carcass. Forensic Science International, 180(2–3), 70–75. https://doi.org/10.1016/J.FORSCIINT.2008.07.001
9. Bidwell, C. A., Murch, R. (2016). Use of microbial forensics in the Middle East/North Africa Region. Federation of American Scientists.
10. Burcham, Z. M., Hood, J. A., Pechal, J. L., Krausz, K. L., Bose, J. L., Schmidt, C. J., Benbow M. E., Jordan, H. R. (2016). Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Science International, 264, 63–69. https://doi.org/10.1016/J.FORSCIINT.2016.03.019
11. Burton, J. P., Wescombe, P. A., Moore, C. J., Chilcott, C. N., Tagg, J. R. (2006). Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Applied and Environmental Microbiology, 72(4), 3050–3053. https://doi.org/10.1128/AEM.72.4.3050-3053.2006
12. Bush, L. M., Perez, M. T. (2012). The anthrax attacks 10 years later. Annals of Internal Medicine, 156(1 Pt 1), 41–44. https://doi.org/10.7326/0003-4819-155-12-201112200-00373
13. Caccianiga, M., Bottacin, S., Cattaneo, C. (2012). Vegetation dynamics as a tool for detecting clandestine graves. Journal of Forensic Sciences, 57(4), 983–988. https://doi.org/10.1111/J.1556-4029.2012.02071.X
14. Caccianiga, M., Caccia, G., Mazzarelli, D., Salsarola, D., Poppa, P., Gaudio, D., Cappella, A., Franceschetti, L., Tambuzzi, S., Maggioni, L., Cattaneo, C. (2021). Common and much less common scenarios in which botany is crucial for forensic pathologist and anthropologists: a series of eight case studies. International Journal of Legal Medicine, 135(3), 1067–1077. https://doi.org/10.1007/S00414-020-02456-0
15. Campobasso, C. P., Linville, J. G., Wells, J. D., Introna, F. (2005). Forensic genetic analysis of insect gut contents. American Journal of Forensic Medicine and Pathology, 26(2), 161–165. https://doi.org/10.1097/01.PAF.0000163832.05939.59
16. Carter, D. O., Yellowlees, D., Tibbett, M. (2007). Cadaver decomposition in terrestrial ecosystems. Die Naturwissenschaften, 94(1), 12–24. https://doi.org/10.1007/S00114-006-0159-1
17. Carter, D. O., Yellowlees, D., Tibbett, M. (2008). Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Applied Soil Ecology, 40(1), 129–137. https://doi.org/10.1016/J.APSOIL.2008.03.010
18. Cieśla, J., Skrobisz, J., Niciński, B., Kloc, M., Mazur, K., Pałasz, A., Javan, G. T., Tomsia, M. (2023). The smell of death. State-of-the-art and future research directions. Frontiers in Microbiology, 14. https://doi.org/10.3389/FMICB.2023.1260869
19. Cobaugh, K. L., Schaeffer, S. M., DeBruyn, J. M. (2015). Functional and structural succession of soil microbial communities below decomposing human cadavers. PloS One, 10(6). https://doi.org/10.1371/JOURNAL.PONE.0130201
20. Czepiel-Mil, K., Los, A., Marczewska, P. (2015). Entomotoksykologia jako narzędzie w rozwiązywaniu zagadek kryminalnych. Medycyna Weterynaryjna, 71(8), 522–527.
21. D’Argenio, V., Salvatore, F. (2015). The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta; International Journal of Clinical Chemistry, 451(Pt A), 97–102. https://doi.org/10.1016/J.CCA.2015.01.003
22. Dalva, M., Moore, T. R., Kalacska, M., Leblanc, G., Costopoulos, A. (2015). Nitrous oxide, methane and carbon dioxide dynamics from experimental pig graves. Forensic Science International, 247, 41–47. https://doi.org/10.1016/J.FORSCIINT.2014.12.002
23. Dell’Annunziata, F., Martora, F., Pepa, M. E. Della, Folliero, V., Luongo, L., Bocelli, S., Guida, F., Mascolo, P., Campobasso, C. P., Maione, S., Franci, G., Galdiero, M. (2022). Postmortem interval assessment by MALDI-TOF mass spectrometry analysis in murine cadavers. Journal of Applied Microbiology, 132(1), 707–714. https://doi.org/10.1111/JAM.15210
24. Enserink, M. (2017). Amsterdam to host Europe’s first “forensic cemetery.” Science. https://doi.org/10.1126/SCIENCE.AAL0637
25. Forbes, S. L., Perrault, K. A., Stefanuto, P. H., Nizio, K. D., Focant, J. F. (2014). Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PloS One, 9(11). https://doi.org/10.1371/JOURNAL.PONE.0113681
26. Franceschetti, L., Amadasi, A., Bugelli, V., Bolsi, G., Tsokos, M. (2023). Estimation of late postmortem interval: where do we stand? A literature review. Biology, 12(6), 783. https://doi.org/10.3390/BIOLOGY12060783
27. Franceschetti, L., Pradelli, J., Tuccia, F., Giordani, G., Cattaneo, C., Vanin, S. (2021). Comparison of accumulated degree-days and entomological approaches in post mortem interval estimation. Insects, 12(3). https://doi.org/10.3390/INSECTS12030264
28. Frątczak-Łagiewska, K. (2016). Metody oceny wieku śladów entomologicznych. Problemy Kryminalistyki, 293(3), 22–27.
29. Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355. https://doi.org/10.1126/SCIENCE.1124234
30. Global study on homicide. (2019). Division for policy analysis and public affairs. United nations office on drugs and crime. Vienna. Austria.
31. Gunn, A., Pitt, S. J. (2012). Microbes as forensic indicators. Tropical Biomedicine, 29(3), 311–330.
32. Harrison, L., Kooienga, E., Speights, C., Tomberlin, J., Lashley, M., Barton, B., Jordan, H. (2020). Microbial succession from a subsequent secondary death event following mass mortality. BMC Microbiology, 20(1). https://doi.org/10.1186/S12866-020-01969-3
33. Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/NATURE11234
34. Johnson, H. R., Trinidad, D. D., Guzman, S., Khan, Z., Parziale, J. V., DeBruyn, J. M., Lents, N. H. (2016). A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PloS One, 11(12). https://doi.org/10.1371/JOURNAL.PONE.0167370
35. Jung, J. Y., Yoon, H. K., An, S., Lee, J. W., Ahn, E. R., Kim, Y. J., Park, H. C., Lee K., Hwang J. H., Lim, S. K. (2018). Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Scientific Reports, 8(1), 10852. https://doi.org/10.1038/S41598-018-29264-2
36. Kaplan, J. B., Fine, D. H. (2002). Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Applied and Environmental Microbiology, 68(10), 4943. https://doi.org/10.1128/AEM.68.10.4943-4950.2002
37. Lee, C. L., Huang, Y. H., Hsu, I. C., Lee, H. C. (2019). Evaluation of plant seed DNA and botanical evidence for potential forensic applications. Forensic Sciences Research, 5(1), 55–63. https://doi.org/10.1080/20961790.2019.1594599
38. Lerner, A., Shor, Y., Vinokurov, A., Okon, Y., Jurkevitch, E. (2006). Can denaturing gradient gel electrophoresis (DGGE) analysis of amplified 16s rDNA of soil bacterial populations be used in forensic investigations? Soil Biology and Biochemistry, 38(6), 1188–1192.
39. Lisiecka, M. (2019). Pyłki i zarodniki – niedoceniane narzędzia kryminalistyczne? Możliwości palinologii kryminalistycznej. Zeszyty Prawnicze, 19(4), 125–151. https://doi.org/10.21697/ZP.2019.19.4.06
40. Lucci, A., Campobasso, C. P., Cirnelli, A., Lorenzini, G. (2008). A promising microbiological test for the diagnosis of drowning. Forensic Science International, 182(1–3), 20–26. https://doi.org/10.1016/J.FORSCIINT.2008.09.004
41. Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50, 370–396.
42. Matuszewski, S., Szpila, K. (2010). Katalog owadów przydatnych do ustalenia czasu śmierci w lasach Polski. Problemy Kryminalistyki, 268, 5–17, 26–38.
43. Metcalf, J. L., Parfrey, L. W., Gonzalez, A., Lauber, C. L., Knights, D., Ackermann, G., Humphrey, G. C., Gebert, M. J., Van Treuren, W., Berg-Lyons, D., Keepers, K., Guo, Y., Bullard, J., Fierer, N., Carter D. O., Knight, R. (2013). A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. ELife, 2013(2). https://doi.org/10.7554/ELIFE.01104.001
44. Mona, S., Jawad, M., Noreen, S., Ali, S., Rakha, A. (2019). Forensic entomology: a comprehensive review. Advancements in Life Sciences, 6(2), 48–59.
45. Mostafa, M., Sabri, D. M., Aly, S. M. (2015). Overviews of “next-generation sequencing”. Forensic Medical Science, 5–6. https://doi.org/10.2147/RRFMS.S57998
46. Oh, J., Byrd, A. L., Park, M., Kong, H. H., Segre, J. A. (2016). Temporal stability of the human skin microbiome. Cell, 165(4), 854–866. https://doi.org/10.1016/J.CELL.2016.04.008
47. Okahashi, N., Nakata, M., Terao, Y., Isoda, R., Sakurai, A., Sumitomo, T., Yamaguchi, M., Kimura, R. K., Oiki, E., Kawabata, S., Ooshima, T. (2011). Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microbial Pathogenesis, 50(3–4), 148–154. https://doi.org/10.1016/J.MICPATH.2011.01.005
48. Oliveira, M., Amorim, A. (2018). Microbial forensics: new breakthroughs and future prospects. Applied Microbiology and Biotechnology, 102(24), 10377–10391. https://doi.org/10.1007/S00253-018-9414-6
49. Panasiuk, A., Kowalińska, J. (2019). Mikrobiota przewodu pokarmowego. Warszawa: PZWL Wydawnictwo Lekarskie.
50. Paneto, G. G., Longo, L. V. G., Martins, J. A., De Camargo, M. A., Costa, J. C., De Mello, A. C. O., Chen, B., Oliviera, R. N., Hirata, M. H., Cicarelli, R. M. B. (2010). Heteroplasmy in hair: study of mitochondrial DNA third hypervariable region in hair and blood samples. Journal of Forensic Sciences, 55(3), 715–718. https://doi.org/10.1111/J.1556-4029.2010.01339.X
51. Pasternak, Z., Al-Ashhab, A., Gatica, J., Gafny, R., Avraham, S., Minz, D., Gillor, O., Jurkevitch, E. (2013). Spatial and temporal biogeography of soil microbial communities in Arid and Semiarid regions. PLoS ONE, 8(7), 69705. https://doi.org/10.1371/JOURNAL.PONE.0069705
52. Pechal, J. L., Crippen, T. L., Benbow, M. E., Tarone, A. M., Dowd, S., Tomberlin, J. K. (2014). The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. International Journal of Legal Medicine, 128(1), 193–205. https://doi.org/10.1007/S00414-013-0872-1
53. Pechal, J. L., Crippen, T. L., Tarone, A. M., Lewis, A. J., Tomberlin, J. K., Benbow, M. E. (2013). Microbial community functional change during vertebrate carrion decomposition. PloS One, 8(11). https://doi.org/10.1371/JOURNAL.PONE.0079035
54. Price, E. P., Seymour, M. L., Sarovich, D. S., Latham, J., Wolken, S. R., Mason, J., Vincent, G., Drees, K. P., Beckstrom-Sternberg, S. M., Phillippy, A. M., Koren, S., Okinaka, R., T., Chung, W. K., Schupp, J. M., Wagner, D. M., Vipond, R., Foster, J. T., Bergman, N. H., Burans, J., Pearson, T., Brooks, T., Keim, A. P. (2012). Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerging Infectious Diseases, 18(8), 1307–1313. https://doi.org/10.3201/EID1808.111343
55. Quality of life indicators –economic security and physical safety –Statistics Explained. (2023). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Quality_of_life_indicators_-_economic_security_and_physical_safety
56. Robinson, J. M., Pasternak, Z., Mason, C. E., Elhaik, E. (2021). Forensic applications of microbiomics: a review. Frontiers in Microbiology, 11. https://doi.org/10.3389/FMICB.2020.608101
57. Sanachai, A., Katekeaw, S., Lomthaisong, K. (2016). Forensic soil investigation from the 16S rDNA profiles of soil bacteria obtained by denaturing gradient gel electrophoresis. Chiang Mai Journal of Science, 54(8), 1964–1974.
58. Schmedes, S. E., Sajantila, A., Budowle, B. (2016). Expansion of microbial forensics. Journal of Clinical Microbiology, 54(8), 1964–1974. https://doi.org/10.1128/JCM.00046-16
59. Schmedes, S. E., Woerner, A. E., Novroski, N. M. M., Wendt, F. R., King, J. L., Stephens, K. M., Budowle, B. (2018). Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification. Forensic Science International. Genetics, 32, 50–61. https://doi.org/10.1016/J.FSIGEN.2017.10.004
60. Sidorova, N. A., Popov, V. L., Lavrukova, O. S., Prikhod’Ko, A. N., Lyabzina, S. N., Tikhomirova, E. I. (2017). [The specific features of corpse putrification under the influence of necrobiome enzymatic systems]. Sudebno-Meditsinskaia Ekspertiza, 60(5), 18–22. https://doi.org/10.17116/SUDMED201760518-22
61. Silván-Cárdenas, J. L., Caccavari-Garza, A., Quinto-Sánchez, M. E., Madrigal-Gómez, J. M., Coronado-Juárez, E., Quiroz-Suarez, D. (2021). Assessing optical remote sensing for grave detection. Forensic Science International, 329. https://doi.org/10.1016/J.FORSCIINT.2021.111064
62. Singh, S., Ashikin, N., Abdullah, B., Carbaugh, J., Heo, C. C. (2020). Ants associated with a rat carcass: its implications in forensic entomology with special emphasis on Carebara diversa (Hymenoptera: Formicidae). International Journal of Tropical Insect Science, 40(3). https://doi.org/10.1007/s42690-020-00110-1
63. Sitthiwong, N., Ruangyuttikarn, W., Vongvivach, S., Peerapornpisal, Y. (2014). Detection and identification of diatoms in tissue samples of drowning victims. Chiang Mai Journal of Science, 41(5.1), 1020–1031.
64. Skowronek, R., Tomsia, M., Droździok, K., Kabiesz, J. (2014). Insects feeding on cadavers as an alternative source of human genetic material. Archiwum Medycyny Sądowej i Kryminologii, 64(4), 254–267. https://doi.org/10.5114/AMSIK.2014.50530
65. Skowronek, R. (2012). Wykorzystanie entomologii w kryminalistyce i medycynie sądowej. Problemy Środowiska i Jego Ochrony, 20, 115–137.
66. Skowronek, R., Chowaniec, C. (2010). Polska entomologia sądowa – rys historyczny, stan obecny i perspektywy na przyszłość. Archiwum Medycyny Sądowej i Kryminologii, 60, 55–58.
67. Sontakke, S., Cadenas, M. B., Maggi, R. G., Diniz, P. P. V. P., Breitschwerdt, E. B. (2009). Use of broad range16S rDNA PCR in clinical microbiology. Journal of Microbiological Methods, 76(3), 217–225. https://doi.org/10.1016/J.MIMET.2008.11.002
68. Spitaleri, S., Romano, C., Luise, E. Di, Ginestra, E., Saravo, L. (2006). Genotyping of human DNA recovered from mosquitoes found on a crime scene. International Congress Series, 1288(6), 574–576. https://doi.org/10.1016/j.ics.2005.11.055
69. Szelecz, I., Koenig, I., Seppey, C. V. W., Le Bayon, R. C., Mitchell, E. A. D. (2018). Soil chemistry changes beneath decomposing cadavers over a one-year period. Forensic Science International, 286, 155–165. https://doi.org/10.1016/J.FORSCIINT.2018.02.031
70. Teo, C. H., Pawita, A. H., Khairul, O., Atiah Ayunni, A. G., Noor Hazfalinda, H.. (2013). Post mortem changes in relation to different types of clothing. The Malaysian Journal of Pathology, 35(1), 77–85.
71. Tuccia, F., Zurgani, E., Bortolini, S., Vanin, S. (2019). Experimental evaluation on the applicability of necrobiome analysis in forensic veterinary science. MicrobiologyOpen, 8(9). https://doi.org/10.1002/MBO3.828
72. Ursell, L. K., Metcalf, J. L., Parfrey, L. W., Knight, R. (2012). Defining the human microbiome. Nutrition Reviews, 70(Suppl 1), S38. https://doi.org/10.1111/J.1753-4887.2012.00493.X
73. Virtanen, V., Korpelainen, H., Kostamo, K. (2007). Forensic botany: usability of bryophyte material in forensic studies. Forensic Science International, 172(2–3), 161–163. https://doi.org/10.1016/J.FORSCIINT.2006.11.012
74. von der Lühe, B., Dawson, L. A., Mayes, R. W., Forbes, S. L., Fiedler, S. (2013). Investigation of sterols as potential biomarkers for the detection of pig (S. s. domesticus) decomposition fluid in soils. Forensic Science International, 230(1–3), 68–73. https://doi.org/10.1016/J.FORSCIINT.2013.03.030
75. Wang, M., Chu, J., Wang, Y., Li, F., Liao, M., Shi, H., Zhang, Y., Hu, G., Wang, J. (2019). Forensic entomology application in China: four case reports. Journal of Forensic and Legal Medicine, 63, 40–47. https://doi.org/10.1016/J.JFLM.2019.03.001
76. Watson, C. J., Forbes, S. L. (2008). Investigation of the vegetation associated with grave sites in southern Ontario. Canadian Society of Forensic Science Journal, 41(4), 199–207.
77. Weithmann, S., von Hoermann, C., Degasperi, G., Brandt, K., Steiger, S., Ayasse, M. (2021). Temporal variability of the rove beetle (Coleoptera: Staphylinidae) community on small vertebrate carrion and its potential use for forensic entomology. Forensic Science International, 323. https://doi.org/10.1016/J.FORSCIINT.2021.110792
78. Wells, J. D., Stevens, J. R. (2008). Application of DNAbased methods in forensic entomology. Annual Review of Entomology, 53, 103–120. https://doi.org/10.1146/ANNUREV.ENTO.52.110405.091423
79. Wescott, D. J. (2018). Recent advances in forensic anthropology: decomposition research. Forensic Sciences Research, 3(4), 327. https://doi.org/10.1080/20961790.2018.1488571
80. Wójcik, J., Tomsia, M., Drzewiecki, A., Skowronek, R. (2021). Thanatomicrobiome –state of the art and future directions. Advancements of Microbiology, 60(1), 21–29. https://doi.org/10.21307/PM-2021.60.1.03
81. Zabójstwo – Statystyka – Portal polskiej Policji (2021). https://statystyka.policja.pl/st/przestepstwa-ogolem/przestepstwa-kryminalne/zabojstwo/64003,Zabojstwo.html
82. Zehner, R., Amendt, J., Krettek, R. (2004). STR typing of human DNA from fly larvae fed on decomposing bodies. Journal of Forensic Sciences, 49(2), 1–4. https://doi.org/10.1520/JFS2003248
Information: Problems of Forensic Sciences, 2023, 135, pp. 217 - 237
Article type: Original article
Titles:
Use of microorganisms, insects, plants and soil in criminological research
Use of microorganisms, insects, plants and soil in criminological research
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Centrum Medyczne Kształcenia Podyplomowego
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Warsaw University of Life Sciences, Center of Cellular Immunotherapies, Warszawa, Poland
Published at: 26.03.2024
Received at: 20.09.2023
Accepted at: 27.11.2023
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
English, PolishView count: 388
Number of downloads: 209
Suggested citations: Vancouver