FAQ

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

Publication date: 08.09.2022

Problems of Forensic Sciences, 2022, 129, pp. 75 - 91

https://doi.org/10.4467/12307483PFS.22.004.16305

Authors

,
Vilas A. Chavan
Center of Research for Development (CR4D) and Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India
All publications →
,
Devidas S. Bhagat
Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad, MS India
All publications →
Ajit K. Gangawane
Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India
All publications →

Titles

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

Abstract

This review focuses on the current trends in the use of doped metallic nanomaterials in forensic science for the development and detection of latent fingerprints (LFPs) on various surfaces which provide better fingerprint image quality. The advantages and important results of studies conducted on latent fingerprints detection with various doped metallic nanomaterials are critically discussed. We also glimpse on fluorescent nanoparticles that have succeeded in producing high-quality fingerprint images which lead to the extraction of all three levels of fingerprint features. A few metallic nanomaterials used for latent fingerprints detection did not produce high-quality fingerprint images failing extraction of all three levels of fingerprint features. To overcome this forensic problem more research is needed to improve the latent fingerprint detection abilities of doped metallic nanomaterials.

Acknowledgments

This study was financially supported by the Center of Research for Development (CR4D) and Parul Institute of Applied Sciences, Parul University, Limda, Waghodia, Vadodara, Gujarat, India.

References

Download references
1. Andrade, C. A., Telles, B., Sercheli, M. S., Kawano, N. M., Soares, R. M., Vicente, A. N., Filho, W. X. C., Gomes, J. A. (2015). Road design intervention based on traffic accident dynamics: a forensic intelligence approach. WIT Transactions on the Built Environment. https://doi.org/10.2495/ut150461.
https://doi.org/10.2495/ut150461.
2. Ashwini, K., Premkumar, H., Daruka Prasad, B., Darshan, G., Nagabhushana, H., Sharma, S., Prashantha, S. (2021). Green emitting SrAl2O4:Tb3+ nanopowders for forensic, anti-counterfeiting and optoelectronic devices. Inorganic. Chemistry Communications, 130, 108665. https://doi.org/10.1016/j.inoche.2021.108665.
https://doi.org/10.1016/j.inoche.2021.108665.
3. Askerbay, A., Molkenova, A., Atabaev, T. S. (2020). Latent fingerprint detection with luminescent Y2O3:Eu3+ nanoparticles. Materials Today: Proceedings, 20, 245–248. https://doi.org/10.1016/j.matpr.2019.10.042.
https://doi.org/10.1016/j.matpr.2019.10.042.
4. Basavaraj, R., Nagabhushana, H., Darshan, G., Daruka Prasad, B., Rahul, M., Sharma, S., Sudaramani, R., Archana, K. (2017). Red and green emitting CTAB assisted CdSiO3:Tb3+/Eu3+ nanopowders as fluorescent labelling agents used in forensic and display applications. Dyes and Pigments, 147, 364–377. https://doi.org/10.1016/j.dyepig.2017.08.011.
https://doi.org/10.1016/j.dyepig.2017.08.011.
5. Bharat, L. K., Nagaraju, G., Yu, J. S. (2018). Hexadentate ligand-assisted wet-chemical approach to rare-earth free self-luminescent cocoon-shaped barium orthovanadate nanoparticles for latent fingerprint visualization. Sensors and Actuators B: Chemical, 271, 164–173. https://doi.org/10.1016/j.snb.2018.05.088.
https://doi.org/10.1016/j.snb.2018.05.088.
6. Bharat, L. K., Raju, G. S. R., Yu, J. S. (2017). Red and green colors emitting spherical-shaped calcium molybdate nanophosphors for enhanced latent fingerprint detection. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-11692-1.
https://doi.org/10.1038/s41598-017-11692-1.
7. Camargo Filho, W. X., Telles, B., Andrade, C. A., Sercheli, M. S., Kawano, N. M., Soares, R. M., Vicente, A. N., Corrêa, R. S., Gomes, J. A. (2016). Forensic intelligence as a useful tool for reducing traffic fatalities: the Brazilian Federal District case. Revista Brasileira de Criminalística, 5(2), 7–13. https://doi.org/10.15260/rbc.v5i2.126.
https://doi.org/10.15260/rbc.v5i2.126.
8. Chen, J., Hardev, V., Yurek, J. (2013). Quantum-dot displays: Giving LCDs a competitive edge through color. Information Display, 29(1), 12–17. https://doi.org/10.1002/j.2637-496x.2013.tb00578.x.
https://doi.org/10.1002/j.2637-496x.2013.tb00578.x.
9. Darshan, G., Premkumar, H., Nagabhushana, H., Sharma, S., Prasad, B. D., Prashantha, S., Basavaraj, R. (2016a). Superstructures of doped yttrium aluminates for luminescent and advanced forensic investigations. Journal of Alloys and Compounds, 686, 577–587. https://doi.org/10.1016/j.jallcom.2016.05.255.
https://doi.org/10.1016/j.jallcom.2016.05.255.
10. Darshan, G., Premkumar, H., Nagabhushana, H., Sharma, S., Prasad, B. D., Prashantha, S. (2016b). Neodymium doped yttrium aluminate synthesis and optical properties – a blue light emitting nanophosphor and its use in advanced forensic analysis. Dyes and Pigments, 134, 227–233. https://doi.org/10.1016/j.dyepig.2016.06.029.
https://doi.org/10.1016/j.dyepig.2016.06.029.
11. Dennis, E., Va, P., Johnson, F. (2015). Utilizing nanotechnology to combat malaria. Journal of Infectious Diseases and Therapy, 3(4). https://doi.org/10.4172/2332-0877.1000229.
https://doi.org/10.4172/2332-0877.1000229.
12. Doty, K. C., Muro, C. K., Bueno, J., Halamkova, L., Lednev, I. K. (2015). What can Raman spectroscopy do for criminalistics? Journal of Raman Spectroscopy, 47(1), 39–50. https://doi.org/10.1002/jrs.4826.
https://doi.org/10.1002/jrs.4826.
13. Firmino, E., da Silva Oliveira, L., Borges Martins, F. C., Filho, J. C. S., Barbosa, H. P., Andrade, A. A., Karine De Lima Rezende, T., de Lima, R. C., Couto Dos Santos, M. A., Goes, M. S., Ferrari, J. L. (2021). Eu3+-doped SiO2-Y2O3 containing Sr2+ for application as fingerprinting detector. Optical Materials, 114, 111018. https://doi.org/10.1016/j.optmat.2021.111018.
https://doi.org/10.1016/j.optmat.2021.111018.
14. Ghubish, Z., Saif, M., Hafez, H., Mahmoud, H., Kamal, R., El-Kemary, M. (2020). Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. Journal of Molecular Structure, 1207, 127840. https://doi.org/10.1016/j.molstruc.2020.127840.
https://doi.org/10.1016/j.molstruc.2020.127840.
15. Haque, F., Westland, A. D., Milligan, J., Kerr, F. M. (1989). A small particle (iron oxide) suspension for detection of latent fingerprints on smooth surfaces. Forensic Science International, 41(1–2), 73–82. https://doi.org/10.1016/0379-0738(89)90238-7.
https://doi.org/10.1016/0379-0738(89)90238-7.
16. Huang, W., Li, X., Wang, H., Xu, X., Liu, H., Wang, G. (2014). Synthesis of amphiphilic silica nanoparticles for latent fingerprint detection. Analytical Letters, 48(9), 1524–1535. https://doi.org/10.1080/00032719.2014.984195.
https://doi.org/10.1080/00032719.2014.984195.
17. Jisha, P., Prashantha, S., Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Sciences: Advanced Materials and Devices, 2(4), 437–444. https://doi.org/10.1016/j.jsamd.2017.10.001.
https://doi.org/10.1016/j.jsamd.2017.10.001.
18. Kamal, R., Saif, M. (2020). Barium tungstate doped with terbium ion green nanophosphor: Low temperature preparation, characterization and potential applications. Spectrochimica Acta Part A, 229, 117928. https://doi.org/10.1016/j.saa.2019.117928.
https://doi.org/10.1016/j.saa.2019.117928.
19. Kanodarwala, F. K., Moret, S., Spindler, X., Lennard, C., Roux, C. (2019). Nanoparticles used for fingermark detection-A comprehensive review. WIREs Forensic Science, 1(5). https://doi.org/10.1002/wfs2.1341.
https://doi.org/10.1002/wfs2.1341.
20. Kanodarwala, F. K., Moret, S., Spindler, X., Lennard, C., Roux, C. (2021). Novel upconverting nanoparticles for fingermark detection. Optical Materials, 111, 110568. https://doi.org/10.1016/j.optmat.2020.110568.
https://doi.org/10.1016/j.optmat.2020.110568.
21. Khan, I., Saeed, K., Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.
https://doi.org/10.1016/j.arabjc.2017.05.011.
22. King, A., Singh, R., Anand, R., Behera, S. K., Nayak, B. B. (2021). Phase and luminescence behaviour of Cedoped zirconia nanopowders for latent fingerprint visualisation. Optik, 242, 167087. https://doi.org/10.1016/j.ijleo.2021.167087.
https://doi.org/10.1016/j.ijleo.2021.167087.
23. Komahal, F. F., Nagabhushana, H., Basavaraj, R., Darshan, G., Inamdar, H. K., Sharma, S., Prasad, B. D. (2019). Rational design of monovalent ions (Li, Na, K) co-doped ZnAl2O4:Eu3+ nanocrystals enabling versatile robust latent fingerprint visualization. Journal of Rare Earths, 37(7), 699–705. https://doi.org/10.1016/j.jre.2018.11.003.
https://doi.org/10.1016/j.jre.2018.11.003.
24. Kumar, I., Kumar, S., Singh, M., Kumari, K., Kumar, D., Ansari, K. (2016). Application of nanotechnology in forensic DNA and help to investigations on the crime scene analysis. World Journal of Pharmaceutical Research; 5(1):266e76.
25. Kumar, A., Tiwari, S. P., Swart, H. C., Esteves Da Silva, J. C. G. (2019). Infrared interceded YF3: Er3+/Yb3+ upconversion phosphor for crime scene and anti-counterfeiting applications. Optical Materials, 92, 347–351. https://doi.org/10.1016/j.optmat.2019.04.050.
https://doi.org/10.1016/j.optmat.2019.04.050.
26. Lloyd-Hughes, H., Shiatis, A. E., Pabari, A. (2015). Current and future nanotechnology applications in the management of melanoma: A Review. Journal of Nanomedicine and Nanotechnology, 6(6). https://doi.org/10.4172/2157-7439.1000334.
https://doi.org/10.4172/2157-7439.1000334.
27. Marappa, B., Rudresha, M., Basavaraj, R., Darshan, G., Prasad, B. D., Sharma, S., Sivakumari, S., Amudha, P., Nagabhushana, H. (2018). EGCG assisted Y2O3:Eu3+ nanopowders with 3D micro-architecture assemblies useful for latent finger print recognition and anti-counterfeiting applications. Sensors and Actuators B: Chemical, 264, 426–439. https://doi.org/10.1016/j.snb.2018.02.133.
https://doi.org/10.1016/j.snb.2018.02.133.
28. Mennell, J. (2007). Book review: Houch, M., Siegel, J. (2006). Fundamentals of forensic science. Burlington, MA: Elsevier Academic Press, pp. 671. Criminal Justice Review, 32(4), 476–478. https://doi.org/10.1177/0734016807310661.
https://doi.org/10.1177/0734016807310661.
29. Mohd Lazim, M. I., Badruzaman, N. A. (2015). Quantification of cytokinins in coconut water from different maturation stages of Malaysia coconut (Cocos nucifera L.). International Journal of Food Processing Technology, 6(11). https://doi.org/10.4172/2157-7110.1000515.
https://doi.org/10.4172/2157-7110.1000515.
30. Naik, E. I, Naik, H. B., Viswanath, R., Suresh Gowda, I., Kirthan, B. (2021). Structural, optical and photoluminescence enhancement of 2-mercaptoacetic acid capped Mn2+ doped CdS nanoparticles and their applications in efficient detection of latent fingerprints. Materials Science and Technology, 4, 23–33. https://doi.org/10.1016/j.mset.2020.12.007.
https://doi.org/10.1016/j.mset.2020.12.007.
31. Naik, E. I., Naik, H. B., Swamy, B. K., Viswanath, R., Gowda, I. S., Prabhakara, M., Chetankumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 33, 100671. https://doi.org/10.1016/j.cdc.2021.100671.
https://doi.org/10.1016/j.cdc.2021.100671.
32. Navami, D., Darshan, G., Basavaraj, R., Sharma, S., Kavyashree, D., Venkatachalaiah, K., Nagabhushana, H. (2020). Shape controllable ultrasound assisted fabrication of CaZrO3:Dy3+ hierarchical structures for display, dosimetry and advanced forensic applications. Journal of Photochemistry and Photobiology. A: Chemistry, 389, 112248. https://doi.org/10.1016/j.jphotochem.2019.112248.
https://doi.org/10.1016/j.jphotochem.2019.112248.
33. Pitkethly, M. (2009). Nanotechnology and forensics. Materials Today, 12(6), 6. https://doi.org/10.1016/s1369-7021(09)70167-1.
https://doi.org/10.1016/s1369-7021(09)70167-1.
34. Prasad, V., Lukose, S., Agarwal, P., Prasad, L. (2019). Role of nanomaterials for forensic investigation and latent fingerprinting – A review. Journal of Forensic Sciences, 65(1), 26–36. https://doi.org/10.1111/1556-4029.14172.
https://doi.org/10.1111/1556-4029.14172.
35. Ran, X., Wang, Z., Zhang, Z., Pu, F., Ren, J., Qu, X. (2016). Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chemical Communications, 52(3), 557–560. https://doi.org/10.1039/c5cc08534a.
https://doi.org/10.1039/c5cc08534a.
36. Revannasiddappa, G., Basavaraj, R., Rudresha, M., Nagaraju, G., Kumar, S., Sasidhar, N. (2021). White-light emitting Ca2MgSi2O7:Dy3+ nanopowders: Structural, spectroscopic investigations and advanced forensic applications. Vacuum, 184, 109940. https://doi.org/10.1016/j.vacuum.2020.109940.
https://doi.org/10.1016/j.vacuum.2020.109940.
37. Scotcher, K., Bradshaw, R. (2018). The analysis of latent fingermarks on polymer banknotes using MALDI-MS. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27004-0.
https://doi.org/10.1038/s41598-018-27004-0.
38. Shashikala, B., Premkumar, H., Darshan, G., Nagabhushana, H., Sharma, S., Prashantha, S. (2019). Rational design of bi-functional RE3+ (RE = Tb, Ce) and alkali metals (M+ = Li, Na, K) co-doped CaAl2O4 nanophosphors for solid state lighting and advanced forensic applications. Materials Research Bulletin, 115, 88–97. https://doi.org/10.1016/j.materresbull.2019.03.002.
https://doi.org/10.1016/j.materresbull.2019.03.002.
39. Shilpa, C., Basavaraj, R., Darshan, G., Premkumar, H., Sharma, S., Nagabhushana, H. (2019). New insights into the rapid deposition and visualization of latent fingerprints: Cyan light emitting GdAlO3:Ce3+ nanofluorescent probe. Journal of Photochemistry and Photobiology. A: Chemistry, 376, 288–304. https://doi.org/10.1016/j.jphotochem.2019.02.027.
https://doi.org/10.1016/j.jphotochem.2019.02.027.
40. Shivananjaiah, H., Sailaja Kumari, K., Geetha, M. (2020). Green mediated synthesis of lanthanum doped zinc oxide: Study of its structural, optical and latent fingerprint application. Journal of Rare Earths, 38(12), 1281–1287. https://doi.org/10.1016/j.jre.2020.07.012.
https://doi.org/10.1016/j.jre.2020.07.012.
41. Suresh, C., Vidya, Y., Nagabhushana, H., Anantharaju, K., Venkataravanappa, M., Umeshareddy, K. (2021). Centella asiatica mediated solution combustion synthesis of a novel Pr3+ doped lanthanum oxyfluoride for display and visualization of latent fingerprints and anticounterfeiting applications. Journal of Science: Advanced Mate rials and Devices, 6(1), 75–83. https://doi.org/10.1016/j.jsamd.2020.11.001.
https://doi.org/10.1016/j.jsamd.2020.11.001.
42. Trabelsi, H., Akl, M., Akl, S. H. (2021). Ultrasound assisted Eu3+ doped strontium titanate nanophosphors: Labeling agent useful for visualization of latent fingerprints. Powder Technology, 384, 70–81. https://doi.org/10.1016/j.powtec.2021.02.006.
https://doi.org/10.1016/j.powtec.2021.02.006.
43. Venkataravanappa, M., Basavaraj, R., Darshan, G.., Prasad, B. D., Sharma, S., Hema Prabha, P., Ramani, S., Nagabhushana, H. (2018). Multifunctional Dy (III) doped di-calcium silicate array for boosting display and forensic applications. Journal of Rare Earths, 36(7), 690–702. https://doi.org/10.1016/j.jre.2017.11.013.
https://doi.org/10.1016/j.jre.2017.11.013.
44. Wang, M., Mi, C. C., Wang, W. X., Liu, C. H., Wu, Y. F., Xu, Z. R., Mao, C. B., Xu, S. K. (2009). Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano, 3(6), 1580–1586. https://doi.org/10.1021/nn900491j.
https://doi.org/10.1021/nn900491j.
45. Wang, Z. L. (2004). Nanostructures of zinc oxide. Materials Today, 7(6), 26–33. https://doi.org/10.1016/s1369-7021(04)00286-x.
https://doi.org/10.1016/s1369-7021(04)00286-x.
46. Xu, C., Zhou, R., He, W., Wu, L., Wu, P., Hou, X. (2014). Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Analytical Chemistry, 86(7), 3279–3283. https://doi.org/10.1021/ac404244v.
https://doi.org/10.1021/ac404244v.
47. Yang, Y., Liu, X., Lu, Y., Tang, L., Zhang, J., Ge, L., Li, F. (2016). Visualization of latent fingerprints using a simple “silver imaging ink.” Analytical Methods, 8(33), 6293–6297. https://doi.org/10.1039/c6ay01811d.
https://doi.org/10.1039/c6ay01811d.
48. Yeshodamma, S., Sunitha, D., Basavaraj, R., Darshan, G., Prasad, B. D., Nagabhushana, H. (2019). Monovalent ions co-doped SrTiO3:Pr3+ nanostructures for the visualization of latent fingerprints and can be red component for solid state devices. Journal of Luminescence, 208, 371–387. https://doi.org/10.1016/j.jlumin.2018.12.044.
https://doi.org/10.1016/j.jlumin.2018.12.044.
49. Zhu, B., Tang, M., Yu, L., Qu, Y., Chai, F., Chen, L., Wu, H. (2019). Silicon nanoparticles: fluorescent, colorimetric and gel membrane multiple detection of Cu2+ and Mn2+ as well as rapid visualization of latent fingerprints. Analytical Methods, 11(28), 3570–3577. https://doi.org/10.1039/c9ay01011d.
https://doi.org/10.1039/c9ay01011d.

Information

Information: Problems of Forensic Sciences, 2022, 129, pp. 75 - 91

Article type: Original article

Titles:

Polish:
Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces
English:

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

Authors

Center of Research for Development (CR4D) and Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India

Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad, MS India

Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India

Published at: 08.09.2022

Received at: 01.12.2021

Accepted at: 26.02.2022

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Vilas A. Chavan (Author) - 33%
Devidas S. Bhagat (Author) - 33%
Ajit K. Gangawane (Author) - 34%

Article corrections:

-

Publication languages:

English, Polish