FAQ

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

Publication date: 08.09.2022

Problems of Forensic Sciences, 2022, 129, pp. 75-91

https://doi.org/10.4467/12307483PFS.22.004.16305

Authors

,
Vilas A. Chavan
Center of Research for Development (CR4D) and Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India
All publications →
,
Devidas S. Bhagat
Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad, MS India
All publications →
Ajit K. Gangawane
Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India
All publications →

Download full text

Titles

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

Abstract

This review focuses on the current trends in the use of doped metallic nanomaterials in forensic science for the development and detection of latent fingerprints (LFPs) on various surfaces which provide better fingerprint image quality. The advantages and important results of studies conducted on latent fingerprints detection with various doped metallic nanomaterials are critically discussed. We also glimpse on fluorescent nanoparticles that have succeeded in producing high-quality fingerprint images which lead to the extraction of all three levels of fingerprint features. A few metallic nanomaterials used for latent fingerprints detection did not produce high-quality fingerprint images failing extraction of all three levels of fingerprint features. To overcome this forensic problem more research is needed to improve the latent fingerprint detection abilities of doped metallic nanomaterials.

References

Download references

1. Andrade, C. A., Telles, B., Sercheli, M. S., Kawano, N. M., Soares, R. M., Vicente, A. N., Filho, W. X. C., Gomes, J. A. (2015). Road design intervention based on traffic accident dynamics: a forensic intelligence approach. WIT Transactions on the Built Environmenthttps://doi.org/10.2495/ut150461

2. Ashwini, K., Premkumar, H., Daruka Prasad, B., Darshan, G., Nagabhushana, H., Sharma, S., Prashantha, S. (2021). Green emitting SrAl2O4:Tb3+ nanopowders for forensic, anti-counterfeiting and optoelectronic devices. Inorganic. Chemistry Communications130, 108665. https://doi.org/10.1016/j.inoche.2021.108665

3. Askerbay, A., Molkenova, A., Atabaev, T. S. (2020). Latent fingerprint detection with luminescent Y2O3:Eu3+ nanoparticles. Materials Today: Proceedings20, 245–248. https://doi.org/10.1016/j.matpr.2019.10.042

4. Basavaraj, R., Nagabhushana, H., Darshan, G., Daruka Prasad, B., Rahul, M., Sharma, S., Sudaramani, R., Archana, K. (2017). Red and green emitting CTAB assisted CdSiO3:Tb3+/Eu3+ nanopowders as fluorescent labelling agents used in forensic and display applications. Dyes and Pigments147, 364–377. https://doi.org/10.1016/j.dyepig.2017.08.011

5. Bharat, L. K., Nagaraju, G., Yu, J. S. (2018). Hexadentate ligand-assisted wet-chemical approach to rare-earth free self-luminescent cocoon-shaped barium orthovanadate nanoparticles for latent fingerprint visualization. Sensors and Actuators B: Chemical271, 164–173. https://doi.org/10.1016/j.snb.2018.05.088

6. Bharat, L. K., Raju, G. S. R., Yu, J. S. (2017). Red and green colors emitting spherical-shaped calcium molybdate nanophosphors for enhanced latent fingerprint detection. Scientific Reports7(1). https://doi.org/10.1038/s41598-017-11692-1

7. Camargo Filho, W. X., Telles, B., Andrade, C. A., Sercheli, M. S., Kawano, N. M., Soares, R. M., Vicente, A. N., Corrêa, R. S., Gomes, J. A. (2016). Forensic intelligence as a useful tool for reducing traffic fatalities: the Brazilian Federal District case. Revista Brasileira de Criminalística5(2), 7–13. https://doi.org/10.15260/rbc.v5i2.126

8. Chen, J., Hardev, V., Yurek, J. (2013). Quantum-dot displays: Giving LCDs a competitive edge through color. Information Display29(1), 12–17. https://doi.org/10.1002/j.2637-496x.2013.tb00578.x

9. Darshan, G., Premkumar, H., Nagabhushana, H., Sharma, S., Prasad, B. D., Prashantha, S., Basavaraj, R. (2016a). Superstructures of doped yttrium aluminates for luminescent and advanced forensic investigations. Journal of Alloys and Compounds686, 577–587. https://doi.org/10.1016/j.jallcom.2016.05.255

10. Darshan, G., Premkumar, H., Nagabhushana, H., Sharma, S., Prasad, B. D., Prashantha, S. (2016b). Neodymium doped yttrium aluminate synthesis and optical properties – a blue light emitting nanophosphor and its use in advanced forensic analysis. Dyes and Pigments134, 227–233. https://doi.org/10.1016/j.dyepig.2016.06.029

11. Dennis, E., Va, P., Johnson, F. (2015). Utilizing nanotechnology to combat malaria. Journal of Infectious Diseases and Therapy, 3(4). https://doi.org/10.4172/2332-0877.1000229

12. Doty, K. C., Muro, C. K., Bueno, J., Halamkova, L., Lednev, I. K. (2015). What can Raman spectroscopy do for criminalistics? Journal of Raman Spectroscopy, 47(1), 39–50. https://doi.org/10.1002/jrs.4826

13. Firmino, E., da Silva Oliveira, L., Borges Martins, F. C., Filho, J. C. S., Barbosa, H. P., Andrade, A. A., Karine De Lima Rezende, T., de Lima, R. C., Couto Dos Santos, M. A., Goes, M. S., Ferrari, J. L. (2021). Eu3+-doped SiO2-Y2O3 containing Sr2+ for application as fingerprinting detector. Optical Materials114, 111018. https://doi.org/10.1016/j.optmat.2021.111018

14. Ghubish, Z., Saif, M., Hafez, H., Mahmoud, H., Kamal, R., El-Kemary, M. (2020). Novel red photoluminescence sensor based on Europium ion doped calcium hydroxy stannate CaSn(OH)6:Eu+3 for latent fingerprint detection. Journal of Molecular Structure, 1207, 127840. https://doi.org/10.1016/j.molstruc.2020.127840

15. Haque, F., Westland, A. D., Milligan, J., Kerr, F. M. (1989). A small particle (iron oxide) suspension for detection of latent fingerprints on smooth surfaces. Forensic Science International41(1–2), 73–82. https://doi.org/10.1016/0379-0738(89)90238-7

16. Huang, W., Li, X., Wang, H., Xu, X., Liu, H., Wang, G. (2014). Synthesis of amphiphilic silica nanoparticles for latent fingerprint detection. Analytical Letters48(9), 1524–1535. https://doi.org/10.1080/00032719.2014.984195

17. Jisha, P., Prashantha, S., Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Sciences: Advanced Materials and Devices2(4), 437–444. https://doi.org/10.1016/j.jsamd.2017.10.001

18. Kamal, R., Saif, M. (2020). Barium tungstate doped with terbium ion green nanophosphor: Low temperature preparation, characterization and potential applications. Spectrochimica Acta Part A229, 117928. https://doi.org/10.1016/j.saa.2019.117928

19. Kanodarwala, F. K., Moret, S., Spindler, X., Lennard, C., Roux, C. (2019). Nanoparticles used for fingermark detection-A comprehensive review. WIREs Forensic Science1(5). https://doi.org/10.1002/wfs2.1341

20. Kanodarwala, F. K., Moret, S., Spindler, X., Lennard, C., Roux, C. (2021). Novel upconverting nanoparticles for fingermark detection. Optical Materials111, 110568. https://doi.org/10.1016/j.optmat.2020.110568

21. Khan, I., Saeed, K., Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

22. King, A., Singh, R., Anand, R., Behera, S. K., Nayak, B. B. (2021). Phase and luminescence behaviour of Cedoped zirconia nanopowders for latent fingerprint visualisation. Optik242, 167087. https://doi.org/10.1016/j.ijleo.2021.167087

23. Komahal, F. F., Nagabhushana, H., Basavaraj, R., Darshan, G., Inamdar, H. K., Sharma, S., Prasad, B. D. (2019). Rational design of monovalent ions (Li, Na, K) co-doped ZnAl2O4:Eu3+ nanocrystals enabling versatile robust latent fingerprint visualization. Journal of Rare Earths37(7), 699–705. https://doi.org/10.1016/j.jre.2018.11.003

24. Kumar, I., Kumar, S., Singh, M., Kumari, K., Kumar, D., Ansari, K. (2016). Application of nanotechnology in forensic DNA and help to investigations on the crime scene analysis. World Journal of Pharmaceutical Research; 5(1):266e76.

25. Kumar, A., Tiwari, S. P., Swart, H. C., Esteves Da Silva, J. C. G. (2019). Infrared interceded YF3: Er3+/Yb3+ upconversion phosphor for crime scene and anti-counterfeiting applications. Optical Materials92, 347–351. https://doi.org/10.1016/j.optmat.2019.04.050

26. Lloyd-Hughes, H., Shiatis, A. E., Pabari, A. (2015). Current and future nanotechnology applications in the management of melanoma: A Review. Journal of Nanomedicine and Nanotechnology6(6). https://doi.org/10.4172/2157-7439.1000334

27. Marappa, B., Rudresha, M., Basavaraj, R., Darshan, G., Prasad, B. D., Sharma, S., Sivakumari, S., Amudha, P., Nagabhushana, H. (2018). EGCG assisted Y2O3:Eu3+ nanopowders with 3D micro-architecture assemblies useful for latent finger print recognition and anti-counterfeiting applications. Sensors and Actuators B: Chemical264, 426–439. https://doi.org/10.1016/j.snb.2018.02.133

28. Mennell, J. (2007). Book review: Houch, M., Siegel, J. (2006). Fundamentals of forensic science. Burlington, MA: Elsevier Academic Press, pp. 671. Criminal Justice Review32(4), 476–478. https://doi.org/10.1177/0734016807310661

29. Mohd Lazim, M. I., Badruzaman, N. A. (2015). Quantification of cytokinins in coconut water from different maturation stages of Malaysia coconut (Cocos nucifera L.). International Journal of Food Processing Technology, 6(11). https://doi.org/10.4172/2157-7110.1000515

30. Naik, E. I, Naik, H. B., Viswanath, R., Suresh Gowda, I., Kirthan, B. (2021). Structural, optical and photoluminescence enhancement of 2-mercaptoacetic acid capped Mn2+ doped CdS nanoparticles and their applications in efficient detection of latent fingerprints. Materials Science and Technology4, 23–33. https://doi.org/10.1016/j.mset.2020.12.007

31. Naik, E. I., Naik, H. B., Swamy, B. K., Viswanath, R., Gowda, I. S., Prabhakara, M., Chetankumar, K. (2021). Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections33, 100671. https://doi.org/10.1016/j.cdc.2021.100671

32. Navami, D., Darshan, G., Basavaraj, R., Sharma, S., Kavyashree, D., Venkatachalaiah, K., Nagabhushana, H. (2020). Shape controllable ultrasound assisted fabrication of CaZrO3:Dy3+ hierarchical structures for display, dosimetry and advanced forensic applications. Journal of Photochemistry and Photobiology. A: Chemistry389, 112248. https://doi.org/10.1016/j.jphotochem.2019.112248

33. Pitkethly, M. (2009). Nanotechnology and forensics. Materials Today12(6), 6. https://doi.org/10.1016/s1369-7021(09)70167-1

34. Prasad, V., Lukose, S., Agarwal, P., Prasad, L. (2019). Role of nanomaterials for forensic investigation and latent fingerprinting – A review. Journal of Forensic Sciences65(1), 26–36. https://doi.org/10.1111/1556-4029.14172

35. Ran, X., Wang, Z., Zhang, Z., Pu, F., Ren, J., Qu, X. (2016). Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chemical Communications52(3), 557–560. https://doi.org/10.1039/c5cc08534a

36. Revannasiddappa, G., Basavaraj, R., Rudresha, M., Nagaraju, G., Kumar, S., Sasidhar, N. (2021). White-light emitting Ca2MgSi2O7:Dy3+ nanopowders: Structural, spectroscopic investigations and advanced forensic applications. Vacuum184, 109940. https://doi.org/10.1016/j.vacuum.2020.109940

37. Scotcher, K., Bradshaw, R. (2018). The analysis of latent fingermarks on polymer banknotes using MALDI-MS. Scientific Reports8(1). https://doi.org/10.1038/s41598-018-27004-0

38. Shashikala, B., Premkumar, H., Darshan, G., Nagabhushana, H., Sharma, S., Prashantha, S. (2019). Rational design of bi-functional RE3+ (RE = Tb, Ce) and alkali metals (M+ = Li, Na, K) co-doped CaAl2O4 nanophosphors for solid state lighting and advanced forensic applications. Materials Research Bulletin115, 88–97. https://doi.org/10.1016/j.materresbull.2019.03.002

39. Shilpa, C., Basavaraj, R., Darshan, G., Premkumar, H., Sharma, S., Nagabhushana, H. (2019). New insights into the rapid deposition and visualization of latent fingerprints: Cyan light emitting GdAlO3:Ce3+ nanofluorescent probe. Journal of Photochemistry and Photobiology. A: Chemistry376, 288–304. https://doi.org/10.1016/j.jphotochem.2019.02.027

40. Shivananjaiah, H., Sailaja Kumari, K., Geetha, M. (2020). Green mediated synthesis of lanthanum doped zinc oxide: Study of its structural, optical and latent fingerprint application. Journal of Rare Earths38(12), 1281–1287. https://doi.org/10.1016/j.jre.2020.07.012

41. Suresh, C., Vidya, Y., Nagabhushana, H., Anantharaju, K., Venkataravanappa, M., Umeshareddy, K. (2021). Centella asiatica mediated solution combustion synthesis of a novel Pr3+ doped lanthanum oxyfluoride for display and visualization of latent fingerprints and anticounterfeiting applications. Journal of Science: Advanced Mate rials and Devices6(1), 75–83. https://doi.org/10.1016/j.jsamd.2020.11.001

42. Trabelsi, H., Akl, M., Akl, S. H. (2021). Ultrasound assisted Eu3+ doped strontium titanate nanophosphors: Labeling agent useful for visualization of latent fingerprints. Powder Technology384, 70–81. https://doi.org/10.1016/j.powtec.2021.02.006

43. Venkataravanappa, M., Basavaraj, R., Darshan, G.., Prasad, B. D., Sharma, S., Hema Prabha, P., Ramani, S., Nagabhushana, H. (2018). Multifunctional Dy (III) doped di-calcium silicate array for boosting display and forensic applications. Journal of Rare Earths36(7), 690–702. https://doi.org/10.1016/j.jre.2017.11.013

44. Wang, M., Mi, C. C., Wang, W. X., Liu, C. H., Wu, Y. F., Xu, Z. R., Mao, C. B., Xu, S. K. (2009). Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles. ACS Nano3(6), 1580–1586. https://doi.org/10.1021/nn900491j

45. Wang, Z. L. (2004). Nanostructures of zinc oxide. Materials Today7(6), 26–33. https://doi.org/10.1016/s1369-7021(04)00286-x

46. Xu, C., Zhou, R., He, W., Wu, L., Wu, P., Hou, X. (2014). Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Analytical Chemistry, 86(7), 3279–3283. https://doi.org/10.1021/ac404244v

47. Yang, Y., Liu, X., Lu, Y., Tang, L., Zhang, J., Ge, L., Li, F. (2016). Visualization of latent fingerprints using a simple “silver imaging ink.” Analytical Methods8(33), 6293–6297. https://doi.org/10.1039/c6ay01811d

48. Yeshodamma, S., Sunitha, D., Basavaraj, R., Darshan, G., Prasad, B. D., Nagabhushana, H. (2019). Monovalent ions co-doped SrTiO3:Pr3+ nanostructures for the visualization of latent fingerprints and can be red component for solid state devices. Journal of Luminescence, 208, 371–387. https://doi.org/10.1016/j.jlumin.2018.12.044

49. Zhu, B., Tang, M., Yu, L., Qu, Y., Chai, F., Chen, L., Wu, H. (2019). Silicon nanoparticles: fluorescent, colorimetric and gel membrane multiple detection of Cu2+ and Mn2+ as well as rapid visualization of latent fingerprints. Analytical Methods11(28), 3570–3577. https://doi.org/10.1039/c9ay01011d

Information

Information: Problems of Forensic Sciences, 2022, 129, pp. 75-91

Article type: Original article

Titles:

English:

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

Polish: Przegląd nanomateriałów bimetalicznych stosowanych do wizualizacji śladów linii papilarnych na różnych powierzchniach

Authors

Center of Research for Development (CR4D) and Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India

Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad, MS India

Parul Institute of Applied Sciences, Parul University, Post Limda, Waghodia, Vadodara, Gujarat, India

Published at: 08.09.2022

Received at: 01.12.2021

Accepted at: 26.02.2022

Article status: Open

Licence: CC BY-NC-ND  licence icon

Article financing:

This study was financially supported by the Center of Research for Development (CR4D) and Parul Institute of Applied Sciences, Parul University, Limda, Waghodia, Vadodara, Gujarat, India.

Percentage share of authors:

Vilas A. Chavan (Author) - 33%
Devidas S. Bhagat (Author) - 33%
Ajit K. Gangawane (Author) - 34%

Article corrections:

-

Publication languages:

English, Polish

Overview of bimetallic nanomaterials used for visualization of latent fingerprints on various surfaces

cytuj

pobierz pliki

RIS BIB ENDNOTE