FAQ

Metabolism testing methods as exemplified by selected new psychoactive substances (NPSs)

Publication date: 29.03.2022

Problems of Forensic Sciences, 2021, 126-127, pp. 121 - 135

https://doi.org/10.4467/12307483PFS.20.007.15447

Authors

,
Małgorzata Piechaczek
Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
All publications →
,
Magdalena Smolik
Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
All publications →
,
Sebastian Rojek
Department of Forensic Medicine, Jagiellonian University Medical College, Kraków, Poland
, Poland
https://orcid.org/0000-0002-3188-0982 Orcid
All publications →
Beata Bystrowska
Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
All publications →

Titles

Metabolism testing methods as exemplified by selected new psychoactive substances (NPSs)

Abstract

Detailed assessment of the biotransformation of compounds and the activity of their metabolites is an extremely important element in the safety evaluation of a substance, both in preclinical and clinical studies. It should be noted that the metabolite may differ from the parent compound in terms of physicochemical properties and consequently pharmacological and toxicological properties.

The purpose of the biotransformation of xenobiotics is to increase their hydrophilicity, which allows excretion in the urine. the metabolites of biotransformation phase I show undesirable pharmacological or toxic effects much more often. according to U.S. Food and Drug administration (FDA) guidance, if a metabolite in the human body accounts for more than 10% of the total amount of metabolites, its safety should be thoroughly assessed. Metabolites can interact more strongly or weakly, or to the same degree, with the same or a different molecular target as the parent compound. they can also display non-specific effects by, for example, damaging macromolecules (e.g. proteins, nucleic acids) in the way that free radicals do. In the case of new psychoactive substances (NPSs), the pharmacological properties, including metabolism, are largely unknown until they are traded illegally and their users begin to appear in departments of toxicology or forensic medicine. It is in this way that the activity profile and probable metabolic pathways of NPSs are determined. to determine the metabolites of NPSs is also an important toxicological skill in the forensic testing of biological samples (blood/urine/tissue) collected from victims, in which metabolites, not parent compounds, are usually found.

Using examples from the authors’ research and the available literature, the article aims to present alternative methods of metabolism testing for NPSs. In vitro methods (application of microsomes, S9 fraction, hepatocytes, cytosol) are discussed and comparisons are made between the results of in vivo tests on animals and analyses of autopsy material.

The experiments and the literature review demonstrate that by using in vitro methods the metabolism of NPSs can be predicted with high probability. By improving existing methods of metabolism research and creating new and alternative ones it will be possible to better understand metabolic pathways and better identify the NPS metabolites formed in the human body. This will contribute not only to the development of better methods of treating NPS poisoning, but will also be of use when compiling forensic and medical reports for the judiciary.

References

Download references
1. Bruni, P. S., Grafinger, K. E., Nussbaumer, S., König, S., Schürch, S., Weinmann, W. (2018). Study of the in vitro and in vivo metabolism of 4-Ho-MEt. Forensic Science International, 290, 103–110. https://doi.org/10.1016/j. forsciint.2018.06.037.
2. Caspar, A. T., Westphal, F., Meyer, M. R., Maurer, H. H. (2018). LC-high resolution-MS/MS for identification of 69 metabolites of the new psychoactive substance 1-(4-ethylphenyl-)-N-[(2-methoxyphenyl)methyl] propane-2-amine (4-Ea-NBoMe) in rat urine and human liver S9 incubates and comparison of its screening power wit. Analytical and Bioanalytical Chemistry, 410(3), 897–912. https://doi.org/10.1007/s00216-017-0526-0.
https://doi.org/10.1007/s00216-017-0526-0.
3. Correia, M. A. (2012). Drug biotransformation. (In) G. B. Katzung, B. S. Masters, J. A. Trevor, Basic and Clinical Pharmacology (pp. 53–68). The McGraw-Hill Companies, Inc.
4. Erratico, C., Negreira, N., Norouzizadeh, H., Covaci, A., Neels, H., Maudens, K., Van Nuijs, A. L. N. (2015). In vitro and in vivo human metabolism of the synthetic cannabinoid aB-CHMINaCa. Drug Testing and Analysis, 7(10), 866–876. https://doi.org/10.1002/dta.1796.
https://doi.org/10.1002/dta.1796.
5. Gaunitz, F., Thomas, A., Fietzke, M., Franz, F., Auwärter, V., Thevis, M., Mercer-Chalmers-Bender, K. (2019). Phase I metabolic profiling of the synthetic cannabinoids tHJ-018 and tHJ-2201 in human urine in comparison to human liver microsome and cytochrome P450 isoenzyme incubation. International Journal of Legal Medicine, 133(4), 1049–1064. https://doi.org/10.1007/s00414-018-1964-8.
https://doi.org/10.1007/s00414-018-1964-8.
6. Haschimi, B., Giorgetti, A., Mogler, L., Nagy, T. Z., Kramer, S., Halter, S., Boros, S., Dobos, A., Hidvégi, E., Auwärter, V. (2021). The novel psychoactive substance cumyl-CH-MEGaCLoNE: Human phase-I metabolism, basic pharmacological characterization and comparison to other synthetic cannabinoid receptor agonists with a γ-carboline-1-one core. Journal of Analytical Toxicology, 45(3), 277–290. https://doi.org/10.1093/jat/bkaa065.
https://doi.org/10.1093/jat/bkaa065.
7. Hong, Y., Kim, Y. H., Lee, J. M., Yoo, H. H., Choi, S. O., Kang, M. S. (2021). Characterization of in vitro phase I metabolites of methamnetamine in human liver microsomes by liquid chromatography-quadrupole time-of-flight mass spectrometry. International Journal of Legal Medicine, 135(4), 1471–1476. https://doi.org/10.1007/ s00414-021-02594-z.
8. Kim, J. H., Kim, S., Lee, J., In, S., Cho, Y. Y., Kang, H. C., Lee, J. Y., Lee, H. S. (2019). In vitro metabolism of 25B-NBF, 2-(4-bromo-2, 5-dimethoxyphenyl)-N-(2-fluorobenzyl)ethanamine, in human hepatocytes using liquid chromatography–mass spectrometry. Molecules, 24(4), 1–14. https://doi.org/10.3390/molecules24040818.
https://doi.org/10.3390/molecules24040818.
9. Klaś, K., Guzy, P., Piska, K., Wójcik-Pszczoła, K., Koczurkiewicz-Adamczyk, P., Pękala, E. (2018). Zastosowanie modeli in vitro w przedklinicznych badaniach bezpieczeństwa nowych kandydatów na leki. Farmacja Polska, 74(1), 45–51.
10. Krechniak, J. (2007). Absorbcja, dystrybucja, biotransformacja i wydalanie trucizn. (In) w. Seńczuk (red.), Toksykologia współczesna (pp. 55–153). Warszawa: Wydawnictwo Lekarskie PZWL.
11. Krotulski, A. J., Mohr, A. L. A., Papsun, D. M., Logan, B. K. (2018). Metabolism of novel opioid agonists U-47700 and U-49900 using human liver microsomes with confirmation in authentic urine specimens from drug users. Drug Testing and Analysis, 10(1), 127–136. https://doi. org/10.1002/dta.2228.
https://doi.org/10.1002/dta.2228.
12. Lee, S. K., Kang, M. J., Jin, C., In, M. K., Kim, D. H., Yoo, H. H. (2009). Flavin-containing monooxygenase 1-catalysed N,N-dimethylamphetamine N-oxidation DMa. Xenobiotica, 39(9), 680–686. https://doi. org/10.1080/00498250902998699.
https://doi.org/10.1080/00498250902998699.
13. Manier, S. K., Felske, C., Eckstein, N., Meyer, M. R. (2020). The metabolic fate of two new psychoactive substances − 2-aminoindane and N-methyl-2-aminoindane studied in vitro and in vivo to support drug testing. Drug Testing and Analysis, 12(1), 145–151. https://doi. org/10.1002/dta.2699.
https://doi.org/10.1002/dta.2699.
14. Manier, S. K., Felske, C., Zapp, J., Eckstein, N., Meyer, M. R. (2021). Studies on the in vitro and in vivo metabolic fate of the new psychoactive substance N-ethyl-N-propyltryptamine for analytical purposes. Journal of Analytical Toxicology, 45(2), 195–202. https://doi.org/10.1093/ jat/bkaa060.
15. Meyer, M. R., Maurer, H. H. (2009). Enantioselectivity in the methylation of the catecholic phase I metabolites of methylenedioxy designer drugs and their capability to inhibit catechol-o-methyltransferase-catalyzed dopamine 3-methylation. Chemical Research in Toxicology, 22(6), 1205–1211. https://doi.org/10.1021/tx900134e.
https://doi.org/10.1021/tx900134e.
16. Murray, K. R. (1995). Metabolizm ksenobiotyków. (In) K. D. Granner, A. P. Mayes, M. W. Rodwell, Biochemia Harpera (pp. 817–823). Warszawa: Wydawnictwo Lekarskie PZWL.
17. Mutschler, E., Geisslinger, G., Kroemer, K. H., Menzel, S., Ruth, P., Shäfer-Korting, M. (2012). Farmakokinetyka. Biotransformacja. (In:) Farmakologia i toksykologia (pp. 21–34). Wrocław: Medpharm Polska.
18. Negreira, N., Erratico, C., Kosjek, T., Van Nuijs, A. L. N., Heath, E., Neels, H., Covaci, A. (2015). In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Analytical and Bioanalytical Chemistry, 407(19), 5803–5816. https://doi.org/10.1007/s00216-015-8763-6.
https://doi.org/10.1007/s00216-015-8763-6.
19. Nielsen, L. M., Holm, N. B., Leth-Petersen, S., Kristensen, J. L., Olsen, L., Linnet, K. (2017). Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBoMe and 25I-NBoH. Drug Testing and Analysis, 9(5), 671–679. https://doi. org/10.1002/dta.2031.
https://doi.org/10.1002/dta.2031.
20. Pettersson Bergstrand, M., Richter, L. H. J., Maurer, H. H., Wagmann, L., Meyer, M. R. (2019). In vitro glucuronidation of designer benzodiazepines by human UDP-glucuronyltransferases. Drug Testing and Analysis, 11(1), 45–50. https://doi.org/10.1002/dta.2463.
https://doi.org/10.1002/dta.2463.
21. Richter, L. H. J., Flockerzi, V., Maurer, H. H., Meyer, M. R. (2017). Pooled human liver preparations, HeparG, or HepG2 cell lines for metabolism studies of new psychoactive substances? a study using MDMa, MDBD, butylone, MDPPP, MDPV, MDPB, 5-MaPB, and 5-aPI as examples. Journal of Pharmaceutical and Biomedical Analysis, 143, 32–42. https://doi.org/10.1016/j. jpba.2017.05.028.
22. Richter, L. H. J., Maurer, H. H., Meyer, M. R. (2017). New psychoactive substances: Studies on the metabolism of XLr-11, aB-PINaCa, FUB-PB-22, 4-methoxy α-PVP, 25-I-NBoMe, and meclonazepam using human liver preparations in comparison to primary human hepatocytes, and human urine. Toxicology Letters, 280, 142–150. https://doi.org/10.1016/j.toxlet.2017.07.901.
https://doi.org/10.1016/j.toxlet.2017.07.901.
23. Robak, M., Walczak, E. (2009). Niekonwencjonalne drożdże w produkcji heterologicznych białek. Biotechnologia, 4(4), 54–73.
24. Sapota, A. (2017). Drogi wchłaniania, metabolizm i wydalanie ksenobiotyków. (In) k. J. Piotrowski (red.), Podstawy toksykologii. Kompendium dla studentów szkół wyższych (pp. 63–86). Warszawa: Wydawnictwo Naukowe PWN.
25. Sauer, C., Peters, F. T., Schwaninger, A. E., Meyer, M. R., Maurer, H. H. (2009). Investigations on the cytochrome P450 (CyP) isoenzymes involved in the metabolism of the designer drugs N-(1-phenyl cyclohexyl)-2-ethoxyethanamine and N-(1-phenylcyclohexyl)-2-methoxyethanamine. Biochemical Pharmacology, 77(3), 444–450. https://doi.org/10.1016/j.bcp.2008.10.024.
https://doi.org/10.1016/j.bcp.2008.10.024.
26. Schadt, S., Bister, B., Chowdhury, S. K., Funk, C., Hop, E. C. A., Humphreys, W. G., Igarashi, F., Alexander, J., Kagan, M., Khojasteh, S. C., Nedderman, A. N. R., Prakash, C., Runge, F., Scheible, H., Spracklin, D. K., Swart, P., Tse, S., Yuan, J., Obach, R. S. (2018). A decade in the MISt: Learnings from investigations of drug metabolites in drug development under the “metabolites in safety testing” regulatory guidance. Drug Metabolism and Disposition, 46(6), 865–878. https://doi.org/10.1124/ dmd.117.079848.
27. Schwaninger, A. E., Meyer, M. R., Zapp, J., Maurer, H. H. (2012). Investigations on the stereoselectivity of the phase II metabolism of the 3,4-methylenedioxyethylamphetamine (MDEa) metabolites 3,4-dihydroxyethylamphetamine (DHEa) and 4-hydroxy-3-methoxyethylamphetamine (HMEa). Toxicology Letters, 212(1), 38–47. https://doi.org/10.1016/j.toxlet.2012.04.021.
https://doi.org/10.1016/j.toxlet.2012.04.021.
28. Staack, R. F., Theobald, D. S., Paul, L. D., Springer, D., Kraemer, T., Maurer, H. H. (2004). In vivo metabolism of the new designer drug 1-(4-methoxyphenyl)piperazine (MeoPP) in rat and identification of the human cytochrome P450 enzymes responsible for the major metabolic step. Xenobiotica, 34(2), 179–192. https://doi.org/1 0.1080/00498250310001644544.
29. Teksin, Z. S., Lee, I. J., Nemieboka, N. N., Othman, A., Upreti, V. V., Hassan, H. E., Syed, S. S., Prisinzano, T. E., Eddington, N. D. (2009). Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin a, a potent hallucinogen. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 471–477. https://doi.org/10.1016/j.ejpb.2009.01.002.
https://doi.org/10.1016/j.ejpb.2009.01.002.
30. Theobald, D. S., Maurer, H. H. (2007). Identification of monoamine oxidase and cytochrome P450 isoenzymes involved in the deamination of phenethylamine-derived designer drugs (2C-series). Biochemical Pharmacology, 73(2), 287–297. https://doi.org/10.1016/j. bcp.2006.09.022.
31. U.S. Department of Health and Human Services Food and Drug administration, & (CDER). (2016). Safety Testing of Drug Guidance for Industry Metabolites: Vol. Revision 1 (Issue November). Retrieved 20 October 2021 from: https://www.fda.gov/Drugs/GuidanceComplianceregulatory Information/Guidances/default.htm.
32. U.S. Department of Health and Human Services Food and Drug administration, & (CDER). (2020). Safety Testing of Drug Metabolites. Guidance for Industry. https://doi.org/10.1016/S0065-7743(09)04422-4.
https://doi.org/10.1016/S0065-7743(09)04422-4.
33. Wink, C. S. D., Michely, J. A., Jacobsen-Bauer, A., Zapp, J., Maurer, H. H. (2016). Diphenidine, a new psychoactive substance: metabolic fate elucidated with rat urine and human liver preparations and detectability in urine using GC-MS, LC-MSn, and LC-Hr-MSn. Drug Testing and Analysis, 8(10), 1005–1014. https://doi.org/10.1002/ dta.1946.
34. Wintermeyer, A., Möller, I., Thevis, M., Jübner, M., Beike, J., Rothschild, M. A., Bender, K. (2010). In vitro phase I metabolism of the synthetic cannabimimetic JWH-018. Analytical and Bioanalytical Chemistry, 398(5), 2141–2153. https://doi.org/10.1007/s00216-010-4171-0.
https://doi.org/10.1007/s00216-010-4171-0.
35. Xu, D. Q., Zhang, W. F., Li, J., Wang, J. F., Qin, S. Y., Lu, J. H. (2019). Analysis of AMB-FUBINaCa biotransformation pathways in human liver microsome and zebrafish systems by liquid chromatography-high resolution mass spectrometry. Frontiers in Chemistry, 7, 1–9. https://doi.org/10.3389/fchem.2019.00240. 

Information

Information: Problems of Forensic Sciences, 2021, 126-127, pp. 121 - 135

Article type: Original article

Titles:

Polish:

Metabolism testing methods as exemplified by selected new psychoactive substances (NPSs)

English:

Metabolism testing methods as exemplified by selected new psychoactive substances (NPSs)

Authors

Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland

Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland

https://orcid.org/0000-0002-3188-0982

Sebastian Rojek
Department of Forensic Medicine, Jagiellonian University Medical College, Kraków, Poland
, Poland
https://orcid.org/0000-0002-3188-0982 Orcid
All publications →

Department of Forensic Medicine, Jagiellonian University Medical College, Kraków, Poland
Poland

Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland

Published at: 29.03.2022

Received at: 02.11.2021

Accepted at: 10.12.2021

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Małgorzata Piechaczek (Author) - 25%
Magdalena Smolik (Author) - 25%
Sebastian Rojek (Author) - 25%
Beata Bystrowska (Author) - 25%

Article corrections:

-

Publication languages:

English, Polish