Differentiation of blue gel pens using visible spectroscopy coupled with chemometric techniques
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEDifferentiation of blue gel pens using visible spectroscopy coupled with chemometric techniques
Publication date: 26.03.2024
Problems of Forensic Sciences, 2023, 135, pp. 255 - 268
https://doi.org/10.4467/12307483PFS.23.015.19431Authors
Differentiation of blue gel pens using visible spectroscopy coupled with chemometric techniques
Ink analysis is one of the most important and keydimension of forensic document examination (FDE). It is performed to compare, identify, characterize and discriminate different kinds of inks present on questioned document. It becomes key evidence in forensic document examination. In the present work, thirty-eight blue gel pens are discriminated using visible spectroscopy coupled with chemometric techniques. The recorded spectra were visually compared followed by chemometric techniques of principal component analysis (PCA) and linear discriminant analysis (LDA). Discriminating power for visual comparison, PCA and LDA are 58.18%, 100% and 100% respectively. Developed PCA model is validated and 100% accuracy, precision, sensitivity and specificity are achieved. Blue gel pen inks were 100% correctly differentiated on the basis of their brands using PCA followed by LDA. The utilized approach is fast and provides reproducible results. The results of present work demonstrate that potential utility of conventional and cost-effective visible spectroscopy can be improved by coupling it with these chemometric techniques. Major advantage of present research is the minimum damage caused to document. This study establishes a method which provides proof of concept discrimination of the gel pen samples. The methodology adopted in present work can be applied in the alteration cases in examination of suspected documents.
1. Asri, M. N. M., Desa, W. N. S. M., Ismail, D. (2018). Source determination of red gel pen inks using Raman spectroscopy and attenuated total reflectance fourier transform infrared spectroscopy combined with Pearson’s product moment correlation coefficients and principal component analysis. Journal of Forensic Sciences, 63, 285–291. https://doi.org/10.1111/1556-4029.13522
2. Asri, M. N. M., Desa, W. N. S. M., Ismail, D. (2020). Combined principal component analysis (PCA) and hierarchical cluster analysis (HCA): an efficient chemometric approach in aged gel inks discrimination. Australian Journal of Forensic Sciences, 52, 38–59. https://doi.org/10.1080/00450618.2018.1466913
3. Bell, S. E. J., Stewart, S. P., Ho, Y. C., Craythorneb, B. W., Speers, S. J. (2013). Comparison of the discriminating power of Raman and surface-enhanced Raman spectroscopy with established techniques for the examination of liquid and gel inks. Journal of Raman Spectroscopy, 44, 509–517. https://doi.org/10.1002/jrs.4202
4. Brunelle, R. L., Crawford, K. R. (2003). Chapter 3: Ink chemistry. (In) R. L. Brunelle, K. R. Crawford, Advances in the forensic analysis and dating of writing ink (pp. 13–46). Charles C. Thomas Pub Ltd.
5. Bumbrah, G. S., Sharma, R. M. (2016). Raman spectroscopy –basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 6, 209–215. https://doi.org/10.1016/j.ejfs.2015.06.001
6. Calcerrada, M., García-Ruiz, C. (2015). Analysis of questioned documents: a review. Analytica Chimica Acta, 853, 143 –166. https://doi.org/10.1016/j.aca.2014.10.057
7. Cantu, A. A. (2009). Ink analysis. (In) A. Jamieson, A. Moenssens (Eds.), Wiley Encyclopedia of forensic science, first ed. John Wiley & Sons, USA. https://doi.org/10.1002/9780470061589.fsa332
8. Li, B., Xie, P., Guo, Y., Fei, Q. (2014). GC analysis of black gel pen ink stored under different conditions. Journal of Forensic Sciences, 59, 543–549. https://doi.org/10.1111/1556-4029.12313
9. Liu, Y. Z., Yu, J., Xie, M. X., Chen, Y., Jiang, G. Y., Gao, Y . (2006b). Studies on the degradation of blue gel pen dyes by ion-pairing high performance liquid chromatography and electrospray tandem mass spectrometry. Journal of Chromatography A, 1125, 95–103. https://doi.org/10.1016/j.chroma.2006.05.034
10. Liu, Y. Z., Yu, J., Xie, M. X., Liu, Y., Han, J., Jing, T. T. (2006a). Classification and dating of black gel pen ink by ion-pairing high-performance liquid chromatography. Journal of Chromatography A, 1135, 57–64. https://doi.org/10.1016/j.chroma.2006.09.031
11. Mazzella, W. D., Buzzini, P. (2005). Raman spectroscopy of blue gel pen inks. Forensic Science International, 152, 241–247. https://doi.org/10.1016/j.forsciint.2004.09.115
12. Mendlein, A., Szkudlarek, C., Goodpaster, J. V. (2013). Chemometrics. (In) J. A. Siegel, P. J. Saukko (Eds.), Encyclopedia of forensic sciences (pp. 646–651). Waltham: Academic Press. https://doi.org/10.1016/B978-0-12-382165-2.00259-2
13. Saini, K., Rathore, R. (2018). Differentiation of gel pen inks by using high performance thin layer chromatography and gas chromatography-mass spectrometry. Malaysian Journal of Forensic Sciences, 8, 10–17.
14. Silva, C. S., Borba, F. D. S. L., Pimentel, M. F., Pontes, M. J. C., Honorato, R. S., Pasquini, C. (2013). Classification of blue pen ink using infrared spectroscopy and linear discriminant analysis. Microchemical Journal, 109, 122–127. https://doi.org/10.1016/j.microc.2012.03.025
15. Trejos, T., Flores, A., Almirall, J. R. (2010). Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy. Spectrochimica Acta Part B, 65, 884–895. https://doi.org/10.1016/j.sab.2010.08.004
16. Weyermann, C., Bucher, L., Majcherczyk, P. (2011). A statistical methodology for the comparison of blue gel pen inks analyzed by laser desorption/ionization mass spectrometry. Science & Justice, 51, 122–130. https://doi.org/10.1016/j.scijus.2010.10.008
17. Weyermann, C., Bucher, L., Majcherczyk, P., Mazzella, W., Roux, C., Esseiva, P. (2012). Statistical discrimination of black gel pen inks analysed by laser desorption/ionization mass spectrometry. Forensic Science International, 217, 127–133. https://doi.org/10.1016/j.forsciint.2011.10.040
18. Wilson, J. D., LaPorte, G. M., Cantu, A. A. (2004). Differentiation of black gel inks using optical and chemical technique. Journal of Forensic Sciences, 49, 1–7. https://doi.org/10.1520/JFS2003262
19. Wu, Y., Zhou, C. X., Yu, J., Liu, H. L., Xie, M. X. (2012). Differentiation and dating of gel pen ink entries on paper by laser desorption ionization and quadruple-time of flight mass spectrometry. Dyes and Pigments, 94, 525–532. https://doi.org/10.1016/j.dyepig.2012.03.005
20. Xu, Y., Wang, J., Yao, L. (2006). Dating the writing age of black roller and gel inks by gas chromatography and UV–Vis spectrophotometer. Forensic Science International, 162, 140–143. https://doi.org/10.1016/j.forsciint.2006.06.011
21. Zadora, G. (2006). Chemometrics and statistical considerations in forensic science. (In) R. A. Meyers (Ed.), Encyclopedia of analytical chemistry. New Jersey: John Wiley & Sons. https://doi.org/10.1002/9780470027318.a9122
Information: Problems of Forensic Sciences, 2023, 135, pp. 255 - 268
Article type: Original article
Titles:
Differentiation of blue gel pens using visible spectroscopy coupled with chemometric techniques
Differentiation of blue gel pens using visible spectroscopy coupled with chemometric techniques
Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity Education Valley, Amity University, Gurugram (Manesar), Haryana, India
Department of Forensic Science, Punjabi University, Patiala, Punjab, India
Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity Education Valley, Amity University, Gurugram (Manesar), Haryana, India
Department of Forensic Chemistry and Toxicology, Government Institute of Forensic Science, Aurangabad, MS India
University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
Published at: 26.03.2024
Received at: 05.05.2023
Accepted at: 25.09.2023
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
English, PolishView count: 230
Number of downloads: 170
Suggested citations: Vancouver