FAQ

Deciphering the microbial signature of death: advances in post-mortem microbial analysis

Publication date: 11.01.2024

Problems of Forensic Sciences, 2023, 134, pp. 95-115

https://doi.org/10.4467/12307483PFS.23.006.19055

Authors

,
Chitra Jangid
Lovely Professional University
Jallandhar, India, India
All publications →
,
Jyoti Dalal
Lovely Professional University
Jallandhar, India, India
Contact with author
All publications →
Kiran Kumari
Lovely Professional University
Jallandhar, India, India
All publications →

Download full text

Titles

Deciphering the microbial signature of death: advances in post-mortem microbial analysis

Abstract

Cadaver decomposition is a natural phenomenon intimately affected by numerous organisms such as insects, fungi, animals, and bacteria where they use the decaying body as their nutrition source. These organisms can be utilized in forensic science to estimate the post-mortem interval (PMI). The post-mortem interval refers to the time that has passed since the death of a person until the body was found. Forensic entomology is one of the popular approaches where successive colonization of insects on cadaver is studied to estimate PMI. However, sometime this method does not provide consistent results due to lack of insect activities during cold environment conditions or when crime scene is indoor. Therefore, a new approach is needed to aid forensic scientists to estimate PMI. Recently, researchers have noted that microbial communities have shown a predictable and clockwise successional pattern on decomposing cadavers and suggested this could be utilized to estimate PMI when this approach is etched with other established methods. The purpose of this review is to summarize some of the studies that have been conducted on the utility of microbial communities in estimating PMI and discuss the role of microbial communities in cadaver decomposition. 

References

Download references

1. Adserias-Garriga, J., Quijada, N. M., Hernandez, M., Rodríguez Lázaro, D., Steadman, D., Garcia-Gil, L. J. (2017). Dynamics of the oral microbiota as a tool to estimate time since death. Molecular Oral Microbiologyhttps://doi.org/10.1111/omi.12191

2. Baccino, E., Cattaneo, C., Jouineau, C., Poudoulec, J., Martrille, L. (2007). Cooling rates of the ear and brain in pig heads submerged in water: implications for postmortem interval estimation of cadavers found in still water. American Journal of Forensic Medicine and Pathology28(1), 80–85. https://doi.org/10.1097/01.PAF.0000233529.50779.08

3. Baccino, E., De Saint Martin, L., Schuliar, Y., Guilloteau, P., Le Rhun, M., Morin, J. F., Leglise, D., Amice, J. (1996). Outer ear temperature and time of death. Forensic Science International83(2), 133–146. https://doi.org/10.1016/S0379-0738(96)02027-0

4. Belk, A., Xu, Z. Z., Carter, D. O., Lynne, A., Bucheli, S., Knight, R., Metcalf, J. L. (2018). Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes9(2). https://doi.org/10.3390/GENES9020104

5. Bell, C. R., Wilkinson, J. E., Robertson, B. K., Javan, G. T. (2018). Sex-related differences in the thanatomicrobiome in postmortem heart samples using bacterial gene regions V1-2 and V4. Letters in Applied Microbiology67(2), 144–153. https://doi.org/10.1111/LAM.13005

6. Brooks, J. W. (2016). Postmortem changes in animal carcasses and estimation of the postmortem interval. Veterinary Pathology53(5), 929–940. https://doi.org/10.1177/0300985816629720

7. Bucheli, S. R., Lynne, A. M. (2016). The microbiome of human decomposition. Microbe Magazine11(4), 165–171. https://doi.org/10.1128/microbe.11.165.1

8. Burcham, Z. M., Pechal, J. L., Schmidt, C. J., Bose, J. L., Rosch, J. W., Benbow, M. E., Jordan, H. R. (2019). Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Frontiers in Microbiology10(MAR), 745. https://doi.org/10.3389/FMICB.2019.00745/BIBTEX

9. Buyer, J. S., Sasser, M. (2012). High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology61, 127–130. https://doi.org/10.1016/J.APSOIL.2012.06.005

10. Can, I., Javan, G. T., Pozhitkov, A. E., Noble, P. A. (2014). Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. Journal of Microbiological Methods106, 1–7. https://doi.org/10.1016/J.MIMET.2014.07.026

11. Cao, J., Li, W. J., Wang, Y. F., An, G. S., Lu, X. J., Du, Q. X., Li, J., Sun, J. H. (2021). Estimating postmortem interval using intestinal microbiota diversity based on 16S rRNA high-throughput sequencing technology. Fa Yi Xue Za Zhi37(5), 621–626. https://doi.org/10.12116/J.ISSN.1004-5619.2020.400708

12. Carter, D. O., Tibbett, M. (2006). Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology and Biochemistry38(5), 1139–1145. https://doi.org/10.1016/j.soilbio.2005.09.014

13. Carter, D. O., Yellowlees, D., Tibbett, M. (2007). Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften94(1), 12–24. https://doi.org/10.1007/s00114-006-0159-1

14. Chandra, J., Sabharwal, K. (1968). Determination of time since death from a study of various postmortem changes – PubMed. Journal of the Indian Medical Association51(7), 336–341. https://pubmed.ncbi.nlm.nih.gov/5705879/

15. Chin, H. C., Marwi, M. A., Jeffery, J., Omar, B. (2008). Insect succession on a decomposing piglet carcass placed in a man-made freshwater pond in Malaysia. Tropical Biomedicine25(1), 23–29.

16. Clarke, T. H., Gomez, A., Singh, H., Nelson, K. E., Brinkac, L. M. (2017). Integrating the microbiome as a resource in the forensics toolkit. Forensic Science International. Genetics30, 141–147. https://doi.org/10.1016/J.FSIGEN.2017.06.008

17. Cobaugh, K. L., Schaeffer, S. M., DeBruyn, J. M. (2015). Functional and structural succession of soil microbial communities below decomposing human cadavers. PLoS ONE10(6), 1–20. https://doi.org/10.1371/journal.pone.0130201

18. Connor, M., Baigent, C., Hansen, E. S. (2018). Testing the use of pigs as human proxies in decomposition studies. Journal of Forensic Sciences63(5), 1350–1355. https://doi.org/10.1111/1556-4029.13727

19. Damann, F. E., Williams, D. E., Layton, A. C. (2015a). Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. Journal of Forensic Sciences60(4), 844–850. https://doi.org/10.1111/1556-4029.12744

20. Damann, F. E., Williams, D. E., Layton, A. C. (2015b). Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. Journal of Forensic Sciences60(4), 844–850. https://doi.org/10.1111/1556-4029.12744

21. DeBruyn, J. M., Hauther, K. A. (2017). Postmortem succession of gut microbial communities in deceased human subjects. PeerJ5(6). https://doi.org/10.7717/PEERJ.3437

22. Deel, H., Bucheli, S., Belk, A., Ogden, S., Lynne, A., Carter, D. O., Knight, R., Metcalf, J. L. (2019). Using microbiome tools for estimating the postmortem interval. (In) B. Budowle, S. Schutzer, S. Morse, Microbial forensics (pp. 171–191). Elsevier. https://doi.org/10.1016/B978-0-12-815379-6.00012-X

23. Dong, K., Xin, Y., Cao, F., Huang, Z., Sun, J., Peng, M., Liu, W., Shi, P. (2019). Succession of oral microbiota community as a tool to estimate postmortem interval. Scientific Reports9(1), 13063. https://doi.org/10.1038/s41598-019-49338-z

24. Emmons, A. L., Mundorff, A. Z., Hoeland, K. M., Davoren, J., Keenan, S. W., Carter, D. O., Campagna, S. R., DeBruyn, J. M. (2022). Postmortem skeletal microbial community composition and function in buried human remains. MSystems7(2). https://doi.org/10.1128/msystems.00041-22

25. Guo, J. J., Liao, H. D., Fu, X. L., Zha, L., Liu, J. S., Cai, J. F. (2015). Bacterial community succession analysis by next generation sequencing in Changsha city, China. Forensic Science International. Genetics Supplement Series5, e107–e108. https://doi.org/10.1016/j.fsigss.2015.09.043

26. Hau Teo, C., Osman, K., Ayunni Ghani, A., Hazfalinda Hamzah, N. (2013). Post mortem changes in relation to different types of clothing. The Malaysian Journal of Pathology35(1), 77–85. https://www.researchgate.net/publication/244481156

27. Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E., Debruyn, J. M. (2015). Estimating time since death from postmortem human gut microbial communities. Journal of Forensic Sciences60(5), 1234–1240. https://doi.org/10.1111/1556-4029.12828

28. Hayashi, H., Sakamoto, M., Kitahara, M., Benno, Y. (2003). Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiology and Immunology47(8), 557–570. https://doi.org/10.1111/J.1348-0421.2003.TB03418.X

29. Heimesaat, M. M., Boelke, S., Fischer, A., Haag, L. M., Loddenkemper, C., Kühl, A. A., Göbel, U. B., Bereswill, S. (2012). Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLOS ONE7(7), e40758. https://doi.org/10.1371/JOURNAL.PONE.0040758

30. Hill, G. T., Mitkowski, N. A., Aldrich-Wolfe, L., Emele, L . R., Jurkonie, D. D., Ficke, A., Maldonado-Ramirez, S., Lynch, S. T., Nelson, E. B. (2000). Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology15(1), 25–36. https://doi.org/10.1016/S0929-1393(00)00069-X

31. Houtz, J. L., Receveur, J. P., Pechal, J. L., Benbow, M. E., Horton, B. M., Wallace, J. R. (2022). Characterization of the avian postmortem gut microbiome across space and time using 16S rRNA sequencing. Forensic Science International: Animals and Environments2, 100053. https://doi.org/10.1016/J.FSIAE.2022.100053

32. Hu, L., Xing, Y., Jiang, P., Gan, L., Zhao, F., Peng, W., Li, W., Tong, Y., Deng, S. (2021). Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm. Science and Justice61(5), 516–527. https://doi.org/10.1016/j.scijus.2021.06.006

33. Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., White, O. (The Human Microbiome Project HMP Consortium) (2012). Structure function and diversity of the healthy human microbiome. Nature486(7402), 207–214. https://doi.org/10.1038/NATURE11234

34. Hyde, E. R., Haarmann, D. P., Lynne, A. M., Bucheli, S. R., Petrosino, J. F. (2013). The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PloS One8(10), e77733. https://doi.org/10.1371/journal.pone.0077733

35. Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M., Bucheli, S. R. (2014). Initial insights into bacterial succession during human decomposition. International Journal of Legal Medicine129(3), 661–671. https://doi.org/10.1007/s00414-014-1128-4

36. Iancu, L., Junkins, E. N., Necula-Petrareanu, G., Purcarea, C. (2018). Characterizing forensically important insect and microbial community colonization patterns in buried remains. Scientific Reports 2018 8:18(1), 1–16. https://doi.org/10.1038/s41598-018-33794-0

37. Javan, G. T., Finley, S. J. (2018). What is the “thanatomicrobiome” and what is its relevance to forensic investigations? (In) T. K. Ralebitso-Senior (Ed.), Forensic ecogenomics: the application of microbial ecology analyses in forensic contexts (pp. 133–143). Elsevier. https://doi.org/10.1016/B978-0-12-809360-3.00006-0

38. Javan, G. T., Finley, S. J., Abidin, Z., Mulle, J. G. (2016a). The thanatomicrobiome: a missing piece of the microbial puzzle of death. Frontiers in Microbiology7(FEB), 225. https://doi.org/10.3389/FMICB.2016.00225/BIBTEX

39. Javan, G. T., Finley, S. J., Can, I., Wilkinson, J. E., Hanson, J. D., Tarone, A. M. (2016b). Human thanatomicrobiome succession and time since death. Scientific Reports6. Nature Publishing Group. https://doi.org/10.1038/srep29598

40. Javan, G. T., Finley, S. J., Smith, T., Miller, J., Wilkinson, J. E. (2017). Cadaver thanatomicrobiome signatures: The ubiquitous nature of Clostridium species in human decomposition. Frontiers in Microbiology8https://doi.org/10.3389/fmicb.2017.02096

41. Johnson, H. R., Trinidad, D. D., Guzman, S., Khan, Z., Parziale, J. V., DeBruyn, J. M., Lents, N. H. (2016). A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE11(12), 1–23. https://doi.org/10.1371/journal.pone.0167370

42. Kim, H., Cho, Y., Lee, J., Kim, H. S., Jung, J. Y., Kim, E. S. (2020). Metagenomic analysis of postmortem-bone using next-generation sequencing and forensic microbiological application. The Microbiological Society of Korea56(1), 10–18. https://doi.org/10.7845/KJM.2020.9158

43. L audadio, I., Fulci, V., Palone, F., Stronati, L., Cucchiara, S., Carissimi, C. (2018). Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. Omics: A Journal of Integrative Biology22(4), 248–254. https://doi.org/10.1089/OMI.2018.0013

44. L iu, R., Wang, Q., Zhang, K., Wu, H., Wang, G., Cai, W., Yu, K., Sun, Q., Fan, S., Wang, Z. (2021). Analysis of postmortem intestinal microbiota successional patterns with application in postmortem interval estimation. Microbial Ecology 84(4), 1087–1102. https://doi.org/10.1007/s00248-021-01923-4

45. L utz, H., Vangelatos, A., Gottel, N., Osculati, A., Visona, S., Finley, S. J., Gilbert, J. A., Javan, G. T. (2020). Effects of extended postmortem interval on microbial communities in organs of the human cadaver. Frontiers in Microbiology11, 1–11. https://doi.org/10.3389/fmicb.2020.569630

46. Melvin, J. R., Cronholm, L. S., Simson, L. R., Isaacs, A. M. (1984). Bacterial transmigration as an indicator of time of death. Journal of Forensic Sciences29(2), 11687J. https://doi.org/10.1520/JFS11687J

47. Metcalf, J. L. (2019). Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Science International. Genetics38, 211–218. https://doi.org/10.1016/j.fsigen.2018.11.004

48. Metcalf, J. L., Wegener Parfrey, L., Gonzalez, A., Lauber, C. L., Knights, D., Ackermann, G., Humphrey, G. C., Gebert, M. J., Van Treuren, W., Berg-Lyons, D., Keepers, K., Guo, Y., Bullard, J., Fierer, N., Carter, D. O., Knight, R. (2013). A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. ELife2, 1–19. https://doi.org/10.7554/elife.01104

49. Metcalf, J. L., Xu, Z. Z., Weiss, S., Lax, S., Van Treuren, W., Hyde, E. R., Song, S. J., Amir, A., Larsen, P., Sangwan, N., Haarmann, D., Humphrey, G. C., Ackermann, G., Thompson, L. R., Lauber, C., Bibat, A., Nicholas, C., Gebert, M. J., Petrosino, J. F., Reed, S. C., Gilbert, J. A., Lynne, A. M., Bucheli, S. R., Carter, D. O., Knight, R. (2016). Microbial community assembly and metabolic function during mammalian corpse decomposition. Science351(6269), 158–162. https://doi.org/10.1126/science.aad2646

50. Olakanye, A. O., Ralebitso-Senior, T. K. (2022). Profiling of successional microbial community structure and composition to identify exhumed gravesoila – preliminary study. Forensic Sciences2(1), 130–143. https://doi.org/10.3390/forensicsci2010010

51. Pechal, J. L., Crippen, T. L., Benbow, M. E., Tarone, A. M., Dowd, S., Tomberlin, J. K. (2014). The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. International Journal of Legal Medicine128(1), 193–205. https://doi.org/10.1007/s00414-013-0872-1

52. Pechal, J. L., Crippen, T. L., Tarone, A. M., Lewis, A. J., Tomberlin, J. K., Benbow, M. E. (2013). Microbial community functional change during vertebrate carrion decomposition. PLoS ONE8(11), 1–11. https://doi.org/10.1371/journal.pone.0079035

53. Pechal, J. L., Schmidt, C. J., Jordan, H. R., Benbow, M. E. (2018). A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Scientific Reports8(1), 1–15. https://doi.org/10.1038/s41598-018-23989-w

54. Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A., Versalovic, J. (2009). Metagenomic pyrosequencing and microbial identification. Clinical Chemistry55(5), 856–866. https://doi.org/10.1373/CLINCHEM.2008.107565

55. Preiswerk, D., Walser, J. C., Ebert, D. (2018). Temporal dynamics of microbiota before and after host death. The ISME Journal12(8), 2076–2085. https://doi.org/10.1038/s41396-018-0157-2

56. Procopio, N., Ghignone, S., Williams, A., Chamberlain, A., Mello, A., Buckley, M. (2019). Metabarcoding to investigate changes in soil microbial communities within forensic burial contexts. Forensic Science International. Genetics39, 73–85. https://doi.org/10.1016/J.FSIGEN.2018.12.002

57. Ritchie, N. J., Schutter, M. E., Dick, R. P., Myrold, D. D. (2000). Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology66(4), 1668–1675. https://doi.org/10.1128/AEM.66.4.1668-1675.2000/ASSET/AA562BC0-8969-4B70-B75A-AA5DB35A4924/ASSETS/GRAPHIC/AM0401491004.JPEG

58. Rodrigo, M. R. (2016). A nonlinear least squares approach to time of death estimation via body cooling. Journal of Forensic Sciences61(1), 230–233. https://doi.org/10.1111/1556-4029.12875

59. Roy, R. (2020). Potential use of microbiota as a forensics tool to determine a post-mortem interval. Duluth Journal of Advanced Writing1, 13–22.

60. Thomas, T. B., Finley, S. J., Wilkinson, J. E., Wescott, D. J., Gorski, A., Javan, G. T. (2017). Postmortem microbial communities in burial soil layers of skeletonized humans. Journal of Forensic and Legal Medicine49, 43–49. https://doi.org/10.1016/J.JFLM.2017.05.009

61. Tuomisto, S., Pessi, T., Collin, P., Vuento, R., Aittoniemi, J., Karhunen, P. J. (2014). Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterology14(1). https://doi.org/10.1186/1471-230X-14-40

62. Vass, A. (2001). Beyond the grave – understanding human decomposition. Microbiology Today28(28), 190–192.

63. Wagner, D. (2008). Microbial communities and processes in arctic permafrost environments. Microbiology of Extreme Soils13, 133–154. https://doi.org/10.1007/978-3-540-74231-9_7

64. Wallace, J. R., Receveur, J. P., Hutchinson, P. H., Kaszubinski, S. F., Wallace, H. E., Benbow, M. E. (2021). Microbial community succession on submerged vertebrate carcasses in a tidal river habitat: implications for aquatic forensic investigations. Journal of Forensic Sciences66(6), 2307–2318. https://doi.org/10.1111/1556-4029.14869

65. Zhang, Q., Widmer, G., Tzipori, S. (2013). A pig model of the human gastrointestinal tract. Gut Microbes4(3), 193–200. https://doi.org/10.4161/GMIC.23867/SUPPL_FILE/KGMI_A_10923867_SM0001.ZIP

66. Zhao, X., Zhong, Z., Hua, Z. (2022). Estimation of the post‐mortem interval by modelling the changes in oral bacterial diversity during decomposition. Journal of Applied Microbiologyhttps://doi.org/10.1111/jam.15771

Information

Information: Problems of Forensic Sciences, 2023, 134, pp. 95-115

Article type: Original article

Titles:

English:

Deciphering the microbial signature of death: advances in post-mortem microbial analysis

Polish: Jak rozszyfrować mikrobiologiczną sygnaturę śmierci – postępy w pośmiertnej analizie drobnoustrojów

Authors

Lovely Professional University
Jallandhar, India, India

Lovely Professional University
Jallandhar, India, India

Lovely Professional University
Jallandhar, India, India

Published at: 11.01.2024

Received at: 21.06.2023

Accepted at: 02.10.2023

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Chitra Jangid (Author) - 33.33%
Jyoti Dalal (Author) - 33.33%
Kiran Kumari (Author) - 33.33%

Article corrections:

-

Publication languages:

English, Polish

Suggested citations: Vancouver

Jangid C, Dalal J, Kumari K. Deciphering the microbial signature of death: advances in post-mortem microbial analysis. Problems of Forensic Sciences. 2024;2023 (134): 95-115

Deciphering the microbial signature of death: advances in post-mortem microbial analysis

cytuj

pobierz pliki

RIS BIB ENDNOTE