Deciphering the microbial signature of death: advances in post-mortem microbial analysis
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEDeciphering the microbial signature of death: advances in post-mortem microbial analysis
Publication date: 11.01.2024
Problems of Forensic Sciences, 2023, 134, pp. 95 - 115
https://doi.org/10.4467/12307483PFS.23.006.19055Authors
Deciphering the microbial signature of death: advances in post-mortem microbial analysis
Cadaver decomposition is a natural phenomenon intimately affected by numerous organisms such as insects, fungi, animals, and bacteria where they use the decaying body as their nutrition source. These organisms can be utilized in forensic science to estimate the post-mortem interval (PMI). The post-mortem interval refers to the time that has passed since the death of a person until the body was found. Forensic entomology is one of the popular approaches where successive colonization of insects on cadaver is studied to estimate PMI. However, sometime this method does not provide consistent results due to lack of insect activities during cold environment conditions or when crime scene is indoor. Therefore, a new approach is needed to aid forensic scientists to estimate PMI. Recently, researchers have noted that microbial communities have shown a predictable and clockwise successional pattern on decomposing cadavers and suggested this could be utilized to estimate PMI when this approach is etched with other established methods. The purpose of this review is to summarize some of the studies that have been conducted on the utility of microbial communities in estimating PMI and discuss the role of microbial communities in cadaver decomposition.
1. Adserias-Garriga, J., Quijada, N. M., Hernandez, M., Rodríguez Lázaro, D., Steadman, D., Garcia-Gil, L. J. (2017). Dynamics of the oral microbiota as a tool to estimate time since death. Molecular Oral Microbiology. https://doi.org/10.1111/omi.12191
2. Baccino, E., Cattaneo, C., Jouineau, C., Poudoulec, J., Martrille, L. (2007). Cooling rates of the ear and brain in pig heads submerged in water: implications for postmortem interval estimation of cadavers found in still water. American Journal of Forensic Medicine and Pathology, 28(1), 80–85. https://doi.org/10.1097/01.PAF.0000233529.50779.08
3. Baccino, E., De Saint Martin, L., Schuliar, Y., Guilloteau, P., Le Rhun, M., Morin, J. F., Leglise, D., Amice, J. (1996). Outer ear temperature and time of death. Forensic Science International, 83(2), 133–146. https://doi.org/10.1016/S0379-0738(96)02027-0
4. Belk, A., Xu, Z. Z., Carter, D. O., Lynne, A., Bucheli, S., Knight, R., Metcalf, J. L. (2018). Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes, 9(2). https://doi.org/10.3390/GENES9020104
5. Bell, C. R., Wilkinson, J. E., Robertson, B. K., Javan, G. T. (2018). Sex-related differences in the thanatomicrobiome in postmortem heart samples using bacterial gene regions V1-2 and V4. Letters in Applied Microbiology, 67(2), 144–153. https://doi.org/10.1111/LAM.13005
6. Brooks, J. W. (2016). Postmortem changes in animal carcasses and estimation of the postmortem interval. Veterinary Pathology, 53(5), 929–940. https://doi.org/10.1177/0300985816629720
7. Bucheli, S. R., Lynne, A. M. (2016). The microbiome of human decomposition. Microbe Magazine, 11(4), 165–171. https://doi.org/10.1128/microbe.11.165.1
8. Burcham, Z. M., Pechal, J. L., Schmidt, C. J., Bose, J. L., Rosch, J. W., Benbow, M. E., Jordan, H. R. (2019). Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Frontiers in Microbiology, 10(MAR), 745. https://doi.org/10.3389/FMICB.2019.00745/BIBTEX
9. Buyer, J. S., Sasser, M. (2012). High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology, 61, 127–130. https://doi.org/10.1016/J.APSOIL.2012.06.005
10. Can, I., Javan, G. T., Pozhitkov, A. E., Noble, P. A. (2014). Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. Journal of Microbiological Methods, 106, 1–7. https://doi.org/10.1016/J.MIMET.2014.07.026
11. Cao, J., Li, W. J., Wang, Y. F., An, G. S., Lu, X. J., Du, Q. X., Li, J., Sun, J. H. (2021). Estimating postmortem interval using intestinal microbiota diversity based on 16S rRNA high-throughput sequencing technology. Fa Yi Xue Za Zhi, 37(5), 621–626. https://doi.org/10.12116/J.ISSN.1004-5619.2020.400708
12. Carter, D. O., Tibbett, M. (2006). Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology and Biochemistry, 38(5), 1139–1145. https://doi.org/10.1016/j.soilbio.2005.09.014
13. Carter, D. O., Yellowlees, D., Tibbett, M. (2007). Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 94(1), 12–24. https://doi.org/10.1007/s00114-006-0159-1
14. Chandra, J., Sabharwal, K. (1968). Determination of time since death from a study of various postmortem changes – PubMed. Journal of the Indian Medical Association, 51(7), 336–341. https://pubmed.ncbi.nlm.nih.gov/5705879/
15. Chin, H. C., Marwi, M. A., Jeffery, J., Omar, B. (2008). Insect succession on a decomposing piglet carcass placed in a man-made freshwater pond in Malaysia. Tropical Biomedicine, 25(1), 23–29.
16. Clarke, T. H., Gomez, A., Singh, H., Nelson, K. E., Brinkac, L. M. (2017). Integrating the microbiome as a resource in the forensics toolkit. Forensic Science International. Genetics, 30, 141–147. https://doi.org/10.1016/J.FSIGEN.2017.06.008
17. Cobaugh, K. L., Schaeffer, S. M., DeBruyn, J. M. (2015). Functional and structural succession of soil microbial communities below decomposing human cadavers. PLoS ONE, 10(6), 1–20. https://doi.org/10.1371/journal.pone.0130201
18. Connor, M., Baigent, C., Hansen, E. S. (2018). Testing the use of pigs as human proxies in decomposition studies. Journal of Forensic Sciences, 63(5), 1350–1355. https://doi.org/10.1111/1556-4029.13727
19. Damann, F. E., Williams, D. E., Layton, A. C. (2015a). Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. Journal of Forensic Sciences, 60(4), 844–850. https://doi.org/10.1111/1556-4029.12744
20. Damann, F. E., Williams, D. E., Layton, A. C. (2015b). Potential use of bacterial community succession in decaying human bone for estimating postmortem interval. Journal of Forensic Sciences, 60(4), 844–850. https://doi.org/10.1111/1556-4029.12744
21. DeBruyn, J. M., Hauther, K. A. (2017). Postmortem succession of gut microbial communities in deceased human subjects. PeerJ, 5(6). https://doi.org/10.7717/PEERJ.3437
22. Deel, H., Bucheli, S., Belk, A., Ogden, S., Lynne, A., Carter, D. O., Knight, R., Metcalf, J. L. (2019). Using microbiome tools for estimating the postmortem interval. (In) B. Budowle, S. Schutzer, S. Morse, Microbial forensics (pp. 171–191). Elsevier. https://doi.org/10.1016/B978-0-12-815379-6.00012-X
23. Dong, K., Xin, Y., Cao, F., Huang, Z., Sun, J., Peng, M., Liu, W., Shi, P. (2019). Succession of oral microbiota community as a tool to estimate postmortem interval. Scientific Reports, 9(1), 13063. https://doi.org/10.1038/s41598-019-49338-z
24. Emmons, A. L., Mundorff, A. Z., Hoeland, K. M., Davoren, J., Keenan, S. W., Carter, D. O., Campagna, S. R., DeBruyn, J. M. (2022). Postmortem skeletal microbial community composition and function in buried human remains. MSystems, 7(2). https://doi.org/10.1128/msystems.00041-22
25. Guo, J. J., Liao, H. D., Fu, X. L., Zha, L., Liu, J. S., Cai, J. F. (2015). Bacterial community succession analysis by next generation sequencing in Changsha city, China. Forensic Science International. Genetics Supplement Series, 5, e107–e108. https://doi.org/10.1016/j.fsigss.2015.09.043
26. Hau Teo, C., Osman, K., Ayunni Ghani, A., Hazfalinda Hamzah, N. (2013). Post mortem changes in relation to different types of clothing. The Malaysian Journal of Pathology, 35(1), 77–85. https://www.researchgate.net/publication/244481156
27. Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E., Debruyn, J. M. (2015). Estimating time since death from postmortem human gut microbial communities. Journal of Forensic Sciences, 60(5), 1234–1240. https://doi.org/10.1111/1556-4029.12828
28. Hayashi, H., Sakamoto, M., Kitahara, M., Benno, Y. (2003). Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiology and Immunology, 47(8), 557–570. https://doi.org/10.1111/J.1348-0421.2003.TB03418.X
29. Heimesaat, M. M., Boelke, S., Fischer, A., Haag, L. M., Loddenkemper, C., Kühl, A. A., Göbel, U. B., Bereswill, S. (2012). Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLOS ONE, 7(7), e40758. https://doi.org/10.1371/JOURNAL.PONE.0040758
30. Hill, G. T., Mitkowski, N. A., Aldrich-Wolfe, L., Emele, L . R., Jurkonie, D. D., Ficke, A., Maldonado-Ramirez, S., Lynch, S. T., Nelson, E. B. (2000). Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 15(1), 25–36. https://doi.org/10.1016/S0929-1393(00)00069-X
31. Houtz, J. L., Receveur, J. P., Pechal, J. L., Benbow, M. E., Horton, B. M., Wallace, J. R. (2022). Characterization of the avian postmortem gut microbiome across space and time using 16S rRNA sequencing. Forensic Science International: Animals and Environments, 2, 100053. https://doi.org/10.1016/J.FSIAE.2022.100053
32. Hu, L., Xing, Y., Jiang, P., Gan, L., Zhao, F., Peng, W., Li, W., Tong, Y., Deng, S. (2021). Predicting the postmortem interval using human intestinal microbiome data and random forest algorithm. Science and Justice, 61(5), 516–527. https://doi.org/10.1016/j.scijus.2021.06.006
33. Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., White, O. (The Human Microbiome Project HMP Consortium) (2012). Structure function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/NATURE11234
34. Hyde, E. R., Haarmann, D. P., Lynne, A. M., Bucheli, S. R., Petrosino, J. F. (2013). The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PloS One, 8(10), e77733. https://doi.org/10.1371/journal.pone.0077733
35. Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M., Bucheli, S. R. (2014). Initial insights into bacterial succession during human decomposition. International Journal of Legal Medicine, 129(3), 661–671. https://doi.org/10.1007/s00414-014-1128-4
36. Iancu, L., Junkins, E. N., Necula-Petrareanu, G., Purcarea, C. (2018). Characterizing forensically important insect and microbial community colonization patterns in buried remains. Scientific Reports 2018 8:1, 8(1), 1–16. https://doi.org/10.1038/s41598-018-33794-0
37. Javan, G. T., Finley, S. J. (2018). What is the “thanatomicrobiome” and what is its relevance to forensic investigations? (In) T. K. Ralebitso-Senior (Ed.), Forensic ecogenomics: the application of microbial ecology analyses in forensic contexts (pp. 133–143). Elsevier. https://doi.org/10.1016/B978-0-12-809360-3.00006-0
38. Javan, G. T., Finley, S. J., Abidin, Z., Mulle, J. G. (2016a). The thanatomicrobiome: a missing piece of the microbial puzzle of death. Frontiers in Microbiology, 7(FEB), 225. https://doi.org/10.3389/FMICB.2016.00225/BIBTEX
39. Javan, G. T., Finley, S. J., Can, I., Wilkinson, J. E., Hanson, J. D., Tarone, A. M. (2016b). Human thanatomicrobiome succession and time since death. Scientific Reports, 6. Nature Publishing Group. https://doi.org/10.1038/srep29598
40. Javan, G. T., Finley, S. J., Smith, T., Miller, J., Wilkinson, J. E. (2017). Cadaver thanatomicrobiome signatures: The ubiquitous nature of Clostridium species in human decomposition. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02096
41. Johnson, H. R., Trinidad, D. D., Guzman, S., Khan, Z., Parziale, J. V., DeBruyn, J. M., Lents, N. H. (2016). A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE, 11(12), 1–23. https://doi.org/10.1371/journal.pone.0167370
42. Kim, H., Cho, Y., Lee, J., Kim, H. S., Jung, J. Y., Kim, E. S. (2020). Metagenomic analysis of postmortem-bone using next-generation sequencing and forensic microbiological application. The Microbiological Society of Korea, 56(1), 10–18. https://doi.org/10.7845/KJM.2020.9158
43. L audadio, I., Fulci, V., Palone, F., Stronati, L., Cucchiara, S., Carissimi, C. (2018). Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. Omics: A Journal of Integrative Biology, 22(4), 248–254. https://doi.org/10.1089/OMI.2018.0013
44. L iu, R., Wang, Q., Zhang, K., Wu, H., Wang, G., Cai, W., Yu, K., Sun, Q., Fan, S., Wang, Z. (2021). Analysis of postmortem intestinal microbiota successional patterns with application in postmortem interval estimation. Microbial Ecology 84(4), 1087–1102. https://doi.org/10.1007/s00248-021-01923-4
45. L utz, H., Vangelatos, A., Gottel, N., Osculati, A., Visona, S., Finley, S. J., Gilbert, J. A., Javan, G. T. (2020). Effects of extended postmortem interval on microbial communities in organs of the human cadaver. Frontiers in Microbiology, 11, 1–11. https://doi.org/10.3389/fmicb.2020.569630
46. Melvin, J. R., Cronholm, L. S., Simson, L. R., Isaacs, A. M. (1984). Bacterial transmigration as an indicator of time of death. Journal of Forensic Sciences, 29(2), 11687J. https://doi.org/10.1520/JFS11687J
47. Metcalf, J. L. (2019). Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Science International. Genetics, 38, 211–218. https://doi.org/10.1016/j.fsigen.2018.11.004
48. Metcalf, J. L., Wegener Parfrey, L., Gonzalez, A., Lauber, C. L., Knights, D., Ackermann, G., Humphrey, G. C., Gebert, M. J., Van Treuren, W., Berg-Lyons, D., Keepers, K., Guo, Y., Bullard, J., Fierer, N., Carter, D. O., Knight, R. (2013). A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. ELife, 2, 1–19. https://doi.org/10.7554/elife.01104
49. Metcalf, J. L., Xu, Z. Z., Weiss, S., Lax, S., Van Treuren, W., Hyde, E. R., Song, S. J., Amir, A., Larsen, P., Sangwan, N., Haarmann, D., Humphrey, G. C., Ackermann, G., Thompson, L. R., Lauber, C., Bibat, A., Nicholas, C., Gebert, M. J., Petrosino, J. F., Reed, S. C., Gilbert, J. A., Lynne, A. M., Bucheli, S. R., Carter, D. O., Knight, R. (2016). Microbial community assembly and metabolic function during mammalian corpse decomposition. Science, 351(6269), 158–162. https://doi.org/10.1126/science.aad2646
50. Olakanye, A. O., Ralebitso-Senior, T. K. (2022). Profiling of successional microbial community structure and composition to identify exhumed gravesoila – preliminary study. Forensic Sciences, 2(1), 130–143. https://doi.org/10.3390/forensicsci2010010
51. Pechal, J. L., Crippen, T. L., Benbow, M. E., Tarone, A. M., Dowd, S., Tomberlin, J. K. (2014). The potential use of bacterial community succession in forensics as described by high throughput metagenomic sequencing. International Journal of Legal Medicine, 128(1), 193–205. https://doi.org/10.1007/s00414-013-0872-1
52. Pechal, J. L., Crippen, T. L., Tarone, A. M., Lewis, A. J., Tomberlin, J. K., Benbow, M. E. (2013). Microbial community functional change during vertebrate carrion decomposition. PLoS ONE, 8(11), 1–11. https://doi.org/10.1371/journal.pone.0079035
53. Pechal, J. L., Schmidt, C. J., Jordan, H. R., Benbow, M. E. (2018). A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Scientific Reports, 8(1), 1–15. https://doi.org/10.1038/s41598-018-23989-w
54. Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A., Versalovic, J. (2009). Metagenomic pyrosequencing and microbial identification. Clinical Chemistry, 55(5), 856–866. https://doi.org/10.1373/CLINCHEM.2008.107565
55. Preiswerk, D., Walser, J. C., Ebert, D. (2018). Temporal dynamics of microbiota before and after host death. The ISME Journal, 12(8), 2076–2085. https://doi.org/10.1038/s41396-018-0157-2
56. Procopio, N., Ghignone, S., Williams, A., Chamberlain, A., Mello, A., Buckley, M. (2019). Metabarcoding to investigate changes in soil microbial communities within forensic burial contexts. Forensic Science International. Genetics, 39, 73–85. https://doi.org/10.1016/J.FSIGEN.2018.12.002
57. Ritchie, N. J., Schutter, M. E., Dick, R. P., Myrold, D. D. (2000). Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology, 66(4), 1668–1675. https://doi.org/10.1128/AEM.66.4.1668-1675.2000/ASSET/AA562BC0-8969-4B70-B75A-AA5DB35A4924/ASSETS/GRAPHIC/AM0401491004.JPEG
58. Rodrigo, M. R. (2016). A nonlinear least squares approach to time of death estimation via body cooling.
Journal of Forensic Sciences, 61(1), 230–233. https://doi.org/10.1111/1556-4029.12875
59. Roy, R. (2020). Potential use of microbiota as a forensics tool to determine a post-mortem interval. Duluth Journal of Advanced Writing, 1, 13–22.
60. Thomas, T. B., Finley, S. J., Wilkinson, J. E., Wescott, D. J., Gorski, A., Javan, G. T. (2017). Postmortem microbial communities in burial soil layers of skeletonized humans. Journal of Forensic and Legal Medicine, 49, 43–49. https://doi.org/10.1016/J.JFLM.2017.05.009
61. Tuomisto, S., Pessi, T., Collin, P., Vuento, R., Aittoniemi, J., Karhunen, P. J. (2014). Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterology, 14(1). https://doi.org/10.1186/1471-230X-14-40
62. Vass, A. (2001). Beyond the grave – understanding human decomposition. Microbiology Today, 28(28), 190–192.
63. Wagner, D. (2008). Microbial communities and processes in arctic permafrost environments. Microbiology of Extreme Soils, 13, 133–154. https://doi.org/10.1007/978-3-540-74231-9_7
64. Wallace, J. R., Receveur, J. P., Hutchinson, P. H., Kaszubinski, S. F., Wallace, H. E., Benbow, M. E. (2021). Microbial community succession on submerged vertebrate carcasses in a tidal river habitat: implications for aquatic forensic investigations. Journal of Forensic Sciences, 66(6), 2307–2318. https://doi.org/10.1111/1556-4029.14869
65. Zhang, Q., Widmer, G., Tzipori, S. (2013). A pig model of the human gastrointestinal tract. Gut Microbes, 4(3), 193–200. https://doi.org/10.4161/GMIC.23867/SUPPL_FILE/KGMI_A_10923867_SM0001.ZIP
66. Zhao, X., Zhong, Z., Hua, Z. (2022). Estimation of the post‐mortem interval by modelling the changes in oral bacterial diversity during decomposition. Journal of Applied Microbiology. https://doi.org/10.1111/jam.15771
Information: Problems of Forensic Sciences, 2023, 134, pp. 95 - 115
Article type: Original article
Titles:
Deciphering the microbial signature of death: advances in post-mortem microbial analysis
Deciphering the microbial signature of death: advances in post-mortem microbial analysis
Lovely Professional University
Jallandhar, India, India
Lovely Professional University
Jallandhar, India, India
Lovely Professional University
Jallandhar, India, India
Published at: 11.01.2024
Received at: 21.06.2023
Accepted at: 02.10.2023
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
English, PolishView count: 397
Number of downloads: 345
Suggested citations: Vancouver