FAQ
Polish Academy of Arts and Sciences logo

Review of Solar Energy Applications for Water Treatment; a Global and African Perspective

Publication date: 30.12.2022

Geoinformatica Polonica, 2022, Vol. 21 (2022), pp. 57 - 82

https://doi.org/10.4467/21995923GP.22.005.17083

Authors

,
Victor Inumidun Fagorite
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0002-1031-2062 Orcid
All publications →
,
Damian Ifeanyi Njoku
Institute of Metal Research, Chinese Academy of Science
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0001-7404-6835 Orcid
All publications →
,
Henry Olumayowa Oluwasola
Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
https://orcid.org/0000-0001-5562-9357 Orcid
All publications →
,
Samuel Okechukwu Onyekuru
Department of Geology, Federal University of Technology, Owerri, Nigeria
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0002-1883-9504 Orcid
All publications →
Emeka Emmanuel Oguzie
Department of Chemistry, Federal University of Technology, Owerri, Nigeria
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0003-2708-9298 Orcid
All publications →

Titles

Review of Solar Energy Applications for Water Treatment; a Global and African Perspective

Abstract

Solar energy is energy derived from the sun’s radiation. The sun’s energy can be exploited using a variety of technologies, including (a) photovoltaic (PV)/concentrator photovoltaics (CPV) systems that convert photons to electricity; and (b) solar thermal technologies that capture thermal energy from the sun’s radiation using solar collectors or concentrated solar power systems (CSP). Due to the quest for power supply from renewable, cheap, and non-gaseous emission sources coupled with the attempts to combat the shortage of potable water in rural areas, much research on the interface of solar energy power systems with water treatment plants has been reported. However, the greater part of the existing reports are based on theoretical modelling, with only minimal experimental, cost analysis, pilot projects and strategic studies. Also, even though solar-powered water treatment technologies are still in the early stages of research, and very rare studies based on real plants have been conducted, existing publications are mostly focused on single principles, making it impossible to assess and compare several technologies. Globally, this review has particularly highlighted the recent advances in the application of solar energy technologies in desalination and wastewater treatments. It likewise highlighted the key research findings and the critical gaps in the existing achievements. It further highlighted the attempts made on hybrid techniques with other renewable energy sources such as wind and geothermal energies which are paramount for scaling up and commercialization uses. However, the findings revealed that most of these studies were restricted to particular parts of the globe without candid evidence from the African perspective, especially Sub-Saharan Africa. Thus, due to the paucity of information concerning this topic within the region, there is a need for further studies on the application of solar energy for water treatment, especially on a pilot scale level for sustainable development.

References

Download references

1. Sawin J. L.; Sverrisson F.; Seyboth K.; Adib R.; Murdock H. E.; Lins, C.; Edwards, I.; Hullin, M.; Nguyen, L.H.; Prillianto S.S.; Satzinger, K.; Renewables 2017 global status report: 2016.

2. International Energy Agency (IEA); World Energy Outlook: 2016.

3. Jones L. E.; Olsson G.; Solar photovoltaic and wind energy providing water. Global Challenges, 2017; 1, 1600022.

4. Copeland C.; Carter N. T.; Energy-water Nexus: The water sector’s energy use. CRS Report, 2017 https://fas.org/sgp/crs/misc/R43200.pdf.

5. De P.; Majumder M.; Allocation of energy in surface water treatment plants for maximum energy conservation. Environment, Development and Sustainability, 2019; 22, pp. 3347–3370.

6. Blanco J.; Malato S.; Fernández-Ibañez P.; Alarcón D.; Gernjak W.; Maldonado M. I.; Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews, 2009; 13, pp. 1437–1445.

7. Terzopoulou E.; Voutsa D.; Study of persistent toxic pollutants in a river basin—ecotoxicological risk assessment. Ecotoxicology, 2017; 26, 625–638.

8. Llanos J.; Raschitor A.; Cañizares P.; Rodrigo M. A.; Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid. Electrochimica Acta, 2018; 269, pp. 415–421.

9. Fernández-Marchante C. M.; Souza F. L.; Millán M.; Lobato J.; Rodrigo M. A.; Improving sustainability of electrolytic wastewater treatment processes by green powering. Science of the Total Environment, 2021; 754, 142230.

10. Sousa M. A.; Gonçalves C.; Vilar V. J.; Boaventura R. A.; Alpendurada M. F.; Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chemical Engineering Journal, 2012; 198, pp. 301–309. https://doi.org/10.1016/j.cej.2012.05.060.

11. Souza F. L.; Saéz C.; Llanos J.; Lanza M. R.; Cañizares P.; Rodrigo M. A; Solar-powered CDEO for the treatment of wastewater polluted with the herbicide 2, 4-D. Chemical Engineering Journal, 2015; 277, pp. 64–69.

12. Millán M.; Rodrigo M. A.; Fernández-Marchante C. M.; Cañizares P.; Lobato J.; Powering with solar energy the anodic oxidation of wastewater polluted with pesticides. ACS Sustainable Chemistry & Engineering, 2019; 7, pp. 8303–8309.

13. Ghaffour N.; Soukane S.; Lee J. G.; Kim Y.; Alpatova A.; Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review. Applied Energy, 2019; 254, p.113698.

14. Bundschuh J.; Kaczmarczyk M.; Ghaffour N.; Tomaszewska B.; State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 2021; 508, pp. 115035.

15. Lovegrove K.; Stein W.; Concentrating Solar Power Technology. Principles, Developments and Applications. No. 21. Woodhead Publishing Series in Energy. Cambridge, UK: Woodhead Publishing Limited, 2012; ISBN: 9781845697693.

16. Romero M.; González‐Aguilar J.; Solar thermal CSP technology. Wiley Interdisciplinary Reviews: Energy and Environment, 2013; 3, pp. 42–59.

17. Al-Nory M.; El-Beltagy M.; An energy management approach for renewable energy integration with power generation and water desalination. Renewable Energy, 2014; 72, pp. 377–385.

18. Ahmed F. E.; Hashaikeh R.; Hilal N.; Solar powered desalination–Technology, energy and future outlook. Desalination, 2019; 453, pp. 54–76.

19. Eddine Boukelia T.; Mecibah M. S.; Parabolic trough solar thermal power plant: Potential, and projects development in Algeria. Renewable and Sustainable Energy Reviews, 2013; 21, pp. 288–297. https://doi.org/10.1016/j.rser.2012.11.074.

20. Jebasingh V. K.; Herbert G. J.; A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 2016; 54, pp. 1085–1091. https://doi.org/10.1016/j.rser.2015.10.043.

21. Zheng Y.; Hatzell K. B.; Technoeconomic analysis of solar thermal desalination. Desalination, 2020; 474, p. 114168.

22. Huang L.; Jiang H.; Wang Y.; Ouyan Z.; Wang W.; Yang B.; Liu H.; Hu X.; Enhanced water yield of solar desalination by thermal concentrated multistage distiller. Desalination, 2020; 477, p. 114260.

23. Achkari O.; El Fadar A.; Latest developments on TES and CSP technologies–Energy and environmental issues, applications and research trends. Applied Thermal Engineering, 2020; 167, p. 114806. https://doi.org/10.1016/j.applthermaleng.2019.114806.

24. Zheng Y.; Gonzalez R. C.; Hatzell M. C.; Hatzell K. B.; Concentrating solar thermal desalination: Performance limitation analysis and possible pathways for improvement. Applied Thermal Engineering, 2021; 184, p.116292. https://doi.org/10.1016/j.applthermaleng.2020.116292.

25. Aqachmar Z.; Allouhi A.; Jamil A.; Gagouch B.; Kousksou T.; Parabolic trough solar thermal power plant Noor I in Morocco. Energy, 2019; 178, pp. 572–584. https://doi.org/10.1016/j.energy.2019.04.160.

26. Compain, P.; Solar energy for water desalination. Procedia Engineering, 2012; 46, pp. 220–227. https://doi.org/10.1016/j.proeng.2012.09.468.

27. Fiorenza G.; Sharma V. K.; Braccio G. Techno-economic evaluation of a solar powered water desalination plant. Energy conversion and management, 2003; 44, pp. 2217–2240. https://doi.org/10.1016/S0196-8904(02)00247-9.

28. Ahmad G. E.; Schmid, J.; Feasibility study of brackish water desalination in the Egyptian deserts and rural regions using PV systems. Energy Conversion and Management, 2002; 43, pp. 2641–2649. https://doi.org/10.1016/S0196-8904(01)00189-3.

29. Scrivani A.; Energy management and DSM techniques for a PV-diesel powered sea water reverse osmosis desalination plant in Ginostra, Sicily. Desalination, 2005; 183, pp. 63–72. https://doi.org/10.1016/j.desal.2005.02.043.

30. Ortiz J. M.; Expósito E.; Gallud F.; García-García V.; Montiel V.; Aldaz A; Photovoltaic electrodialysis system for brackish water desalination: Modeling of global process. Journal of Membrane Science, 2006; 274, pp. 138–149. https://doi.org/10.1016/j.memsci.2005.08.006.

31. Novosel T.; Ćosić B.; Pukšec T.; Krajačić G.; Duić N.; Mathiesen B.V.; Lund H.; Mustafa M.; Integration of renewables and reverse osmosis desalination–Case study for the Jordanian energy system with a high share of wind and photovoltaics. Energy, 2015; 92, pp. 270–278. https://doi.org/10.1016/j.energy.2015.06.057.

32. Darwish M. A.; Abdulrahim H. K.; Hassan A. S.; Mabrouk A. A.; PV and CSP solar technologies & desalination: economic analysis. Desalination and Water Treatment, 2016; 57, pp. 16679–16702. https://doi.org/10.1080/19443994.2015.1084533.

33. Feria-Díaz J. J.; Correa-Mahecha F.; López-Méndez M. C.; Rodríguez-Miranda J. P.; Barrera-Rojas J.; Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water, 2021; 13, p. 1369.

34. Eke J.; Yusuf A.; Giwa A.; Sodiq A; The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, 2020; 495, p. 114633

35. Virgili F.; Brown H.; Pankratz T.; IDA Desalination Yearbook 2017–2018. Media Analytics Ltd.: Oxford, UK: 2018; pp. 5–15.

36. Jones E.; Qadir M.; van Vliet M. T.; Smakhtin V.; Kang S. M.; The state of desalination and brine production: A global outlook. Science of the Total Environment, 2019; 657, pp. 1343–1356.

37. Manju S.; Sagar N.; Renewable energy integrated desalination: A sustainable solution to overcome future fresh-water scarcity in India. Renewable and Sustainable Energy Reviews, 2017; 73, pp. 594–609.

38. Thimmaraju M.; Sreepada D.; Babu G. S.; Dasari B. K.; Velpula S. K.; Vallepu N.; Desalination of water. Desalination and Water Treatment, 2018; pp. 333–347.

39. Khayet M.; Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). Desalination, 2013; 308, pp. 89–101.

40. Mittelman G.; Mouchtar O.; Dayan A.; Large-scale solar thermal desalination plants: A review. Heat transfer engineering, 2007; 28, pp. 924–930.

41. Gastli A.; Charabi Y.; Zekri S.; GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum—Oman. Renewable and Sustainable Energy Reviews, 2010; 14, pp. 821–827. https://doi.org/10.1016/j.rser.2009.08.020.

42. Gonzalez A.; Grágeda M.; Ushak, S.; Assessment of pilot-scale water purification module with electrodialysis technology and solar energy. Applied Energy, 2017; 206, pp. 1643–1652. https://doi.org/10.1016/j.apenergy.2017.09.101

43. Li X.; Lin R.; Ni G.; Xu N.; Hu X.; Zhu B.; Lv G.; Li J.; Zhu S.; Zhu J.; Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018; 5, pp. 70–77. https://doi.org/10.1093/nsr/nwx051.

44. Zhang Y.; Sivakumar M.; Yang, S.; Enever K.; Ramezanianpour M.; Application of solar energy in water treatment processes: A review. Desalination, 2018; 428, pp. 116–145.

45. Yang Y.; Zhao R.; Zhang T. Zhao K. Xiao P.; Ma Y.; Ajayan P.M.; Shi G.; Chen Y.; Graphene-based standalone solar energy converter for water desalination and purification. ACS nano, 2018; 12, pp. 829–835. https://doi.org/10.1021/acsnano.7b08196.

46. Nassrullah H.; Anis S. F.; Hashaikeh R.; Hilal N.; Energy for desalination: A state-of-the-art review. Desalination, 2020; 491, p. 114569.

47. Chen C.; Jiang Y.; Ye Z.; Yang Y.; Hou L. A.; Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China. Global Energy Interconnection, 2019; 2, pp. 98–113.

48. Tufa R. A.; Pawlowski S.; Veerman J.; Bouzek K.; Fontananova E.; Di Profio G.; Velizarov S.; Crespo J.G.; Nijmeijer K.; Curcio E.; Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied energy, 2018; 225, pp. 290–331.

49. Pandey A.K.; Kumar R.R.; Kalidasan B.; Laghari I.A.; Samykano M.; Kothari R.; Abusorrah A.M.; Sharma K.; Tyagi V.V.; Utilization of solar energy for wastewater treatment: Challenges and progressive research trends. Journal of Environmental Management, 2021; 297, p.113300. https://doi.org/10.1016/j.jenvman.2021.113300.

50. Aqlan A. M.; Aklan M.; Momin A. E.; Solar-powered desalination, a novel solar still directly connected to solar parabolic trough. Energy Reports, 2021; 7, pp. 2245–2254.

51. Rahimi B.; Shirvani H.; Alamolhoda A. A.; Farhadi F.; Karimi M.; A feasibility study of solar-powered reverse osmosis processes. Desalination, 2021; 500, p. 114885.

52. Mitra P.; Banerjee P.; Chakrabarti S.; Bhattacharjee S.; Utilization of solar energy for photoreduction of industrial wastewater containing hexavalent chromium with zinc oxide semiconductor catalyst. Desalination and Water Treatment, 2013; 51, pp. 5451–5459

53. Tiwari G. N.; Singh H. N.; Tripathi R; Present status of solar distillation. Solar energy, 2003; 75, pp. 367–373.

54. Al-harahsheh M.; Abu-Arabi M.; Mousa H.; Alzghoul Z.; Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering, 2018; 128, pp. 1030–1040. https://doi.org/10.1016/j.applthermaleng.2017.09.073.

55. Al-Sulaiman F. A.; Zubair M. I.; Atif M.; Gandhidasan P.; Al-Dini S. A.; Antar M. A; Humidification dehumidification desalination system using parabolic trough solar air collector. Applied Thermal Engineering, 2015; 75, pp. 809–816

56. Abdelmoez W.; Mahmoud M. S.; Farrag T. E.; Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: a detailed review. Desalination and Water Treatment, 2014; 52, pp. 4622–4640. https://doi.org/10.1080/19443994.2013.804457.

57. Giwa A.; Akther N.; Al Housani A.; Haris S.; Hasan S. W.; Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity. Renewable and Sustainable Energy Reviews, 2016; 57, pp. 929–944. https://doi.org/10.1016/j.rser.2015.12.108.

58. Hamed M. H.; Kabeel A. E.; Omara Z. M.; Sharshir S. W.; Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination, 2015; 358, pp. 9–17. https://doi.org/10.1016/j.desal.2014.12.005.

59. Zamen M.; Soufari S. M.; Vahdat S. A.; Amidpour M.; Zeinali M. A.; Izanloo H.; Aghababaie H.; Experimental investigation of a two-stage solar humidification–dehumidification desalination process. Desalination, 2014; 332, pp. 1–6. https://doi.org/10.1016/j.desal.2013.10.018.

60. Ali M. T.; Fath H. E.; Armstrong P. R.; A comprehensive techno-economical review of indirect solar desalination. Renewable and Sustainable Energy Reviews, 2011; 15, pp. 4187–4199.

61. Sharaf Eldean M. A.; Fath H. E.; Exergy and thermo-economic analysis of solar thermal cycles powered multi-stage flash desalination process. Desalination and Water Treatment, 2013; 51, pp. 7361–7378. https://doi.org/10.1080/19443994.2013.775670.

62. Alsehli M.; Choi J. K.; Aljuhan M.; A novel design for a solar powered multistage flash desalination. Solar Energy, 153, pp. 348–359. https://doi.org/10.1016/j.solener.2017.05.082.

63. Darawsheh I.; Islam M. D.; Banat, F.; Experimental characterization of a solar powered MSF desalination process performance. Thermal Science and Engineering Progress, 2019; 10, pp. 154–162. https://doi.org/10.1016/j.tsep.2019.01.018.

64. Al-Shammiri M.; Safar M.; Multi-effect distillation plants: state of the art. Desalination, 1999; 126, pp. 45–59.

65. Palenzuela P.; Hassan A. S. Zaragoza G.; Alarcón-Padilla D. C.; Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant. Desalination, 2014; 337, pp. 31–42.

66. Alarcon-Padilla D. C.; García-Rodríguez L.; Blanco-Gálvez J.; Assessment of an absorption heat pump coupled to a multi-effect distillation unit within AQUASOL project. Desalination, 2007; 212, pp. 303–310. https://doi.org/10.1016/j.desal.2006.10.015.

67. Alarcon-Padilla D. C.; Blanco-Gálvez J.; García-Rodríguezz L.; Gernjak W.; Malato-Rodriguez S.; First experimental results of a new hybrid solar/gas multi-effect distillation system: the AQUASOL project. Desalination, 220, pp. 619–625. https://doi.org/10.1016/j.desal.2007.05.027.

68. Olwig R.; Hirsch T.; Sattler C.; Glade H.; Schmeken L.; Will S.; Ghermandi A.; Messalem R.; Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan. Desalination and Water Treatment, 2012; 41, pp. 9–25. https://doi.org/10.1080/19443994.2012.664674.

69. Ghaffour N.; Bundschuh J.; Mahmoudi H.; Goosen M. F.; Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 2013; 356, pp. 94–114.

70. Casimiro S.; Cardoso J.; Ioakimidis C.; Farinha Mendes J.; Mineo C.; Cipollina A.; MED parallel system powered by concentrating solar power (CSP). Model and case study: Trapani, Sicily. Desalination and Water Treatment, 2015; 55, pp. 3253–3266. https://doi.org/10.1080/19443994.2014.940222.

71. Lei Z.; Chen B.; Ding Z; Special distillation processes. 2005; Elsevier.

72. Koschikowski J.; Wieghaus M.; Rommel M.; Ortin V. S.; Suarez B. P.; Rodríguez J. R. B.; Experimental investigations on solar driven stand-alone membrane distillation systems forremote areas. Desalination, 2009; 248, pp. 125–131. https://doi.org/10.1016/j.desal.2008.05.047.

73. Banat F.; Jwaied N.; Autonomous membrane distillation pilot plant unit driven solar energy: Experiences and lessons learned. Int. J. Sustain. Water Environ. Syst, 2010; 1, pp. 21–24.

74. Banat F.; Jwaied N.; Rommel M.; Koschikowski J.; Wieghaus M.; Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination, 2007; 217, pp. 17–28. https://doi.org/10.1016/j.desal.2006.11.027.

75. Saffarini R. B.; Summers E. K.; Arafat H. A.; Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination, 2012; 299, pp. 55–62. https://doi.org/10.1016/j.desal.2012.05.017.

76. Chafidz A.; Al-Zahrani S.; Al-Otaibi M. N.; Hoong C. F.; Lai T. F.; Prabu M.; Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination, 2014; 345, pp. 36–49. https://doi.org/10.1016/j.desal.2014.04.017.

77. Kurupath V. P.; Kannam S. K.; Hartkamp R.; Sathian S. P.; Highly efficient water desalination through hourglass shaped carbon nanopores. Desalination, 2021; 505, p. 114978.

78. Burn S.; Hoang M.; Zarzo D.; Olewniak F.; Campos E.; Bolto B.; Barron O.; Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination, 2015; 364, pp. 2–16.

79. Mokheimer E. M.; Sahin A. Z.; Al-Sharafi A.; Ali A. I.; Modeling and optimization of hybrid wind–solar-powered reverse osmosis water desalination system in Saudi Arabia. Energy Conversion and Management, 2013; 75, pp. 86–97. https://doi.org/10.1016/j.enconman.2013.06.002.

80. Penate B.; Subiela V. J.; Vega F.; Castellano F.; Domínguez F. J.; Millán V.; Uninterrupted eight-year operation of the autonomous solar photovoltaic reverse osmosis system in Ksar Ghilène (Tunisia). Desalination and Water Treatment, 2014; 55, pp. 3141–3148. https://doi.org/10.1080/19443994.2014.940643.

81. Soliman M. N.; Guen F. Z.; Ahmed S. A.; Saleem H.; Khalil M. J.; Zaidi S. J.; Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 2021; 147, pp. 589–608

82. Qasim M.; Darwish N. A.; Sarp S.; Hilal N.; Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, 2015; 374, pp. 47–69.

83. Johnson D. J.; Suwaileh W. A.; Mohammed A. W.; Hilal N.; Osmotic’s potential: An overview of draw solutes for forward osmosis. Desalination, 2018; 434, pp. 100–120.

84. Amy G.; Ghaffour N.; Li Z.; Francis L.; Linares R. V.; Missimer T.; Lattemann S.; Membrane-based seawater desalination: Present and future prospects. Desalination, 2017; 401, pp. 16–21.

85. Khayet M.; Sanmartino J. A.; Essalhi M.; García-Payo M. C.; Hilal N.; Modeling and optimization of a solar forward osmosis pilot plant by response surface methodology. Solar Energy, 2016; 137, pp. 290–302. https://doi.org/10.1016/j.solener.2016.07.046.

86. Suwaileh W.; Johnson D.; Jones D.; Hilal N.; An integrated fertilizer driven forward osmosis-renewables powered membrane distillation system for brackish water desalination: a combined experimental and theoretical approach. Desalination, 2019; 471, p. 114126. https://doi.org/10.1016/j.desal.2019.114126.  

87. Skuse C.; Gallego-Schmid A.; Azapagic A.; Gorgojo P.; Can emerging membrane-based desalination technologies replace reverse osmosis?. Desalination, 2020; 500, p. 114844.

88. Wright N. C.; Justification for community-scale photovoltaic-powered electrodialysis desalination systems for inland rural villages in India. Desalination, 2014; 352, pp. 82–91.

89. Li C.; Goswami Y.; Stefanakos E.; Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews, 2013; 19, pp. 136–163.

90. Zhang Y.; Pinoy L.; Meesschaert B.; Van der Bruggen B.; A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system. Environmental science & technology, 2013; 47, pp. 10548–10555. https://doi.org/10.1021/es402534m.

91. He W.; Amrose S.; Wright N. C.; Buonassisi T.; Peters I. M.; Field demonstration of a cost-optimized solar powered electrodialysis reversal desalination system in rural India. Desalination, 2014; 476, p.114217. https://doi.org/10.1016/j.desal.2019.114217.

92. Chong M. N.; Jin B.; Chow C. W.; Saint C.; Recent developments in photocatalytic water treatment technology: a review. Water research, 2010; 44, pp. 2997–3027.

93. Spasiano D.; Marotta R.; Malato S.; Fernandez-Ibanez P.; Di Somma I.; Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 2015; 170, pp. 90–123.

94. Braham R. J.; Harris A. T.; Review of major design and scaleup considerations for solar photocatalytic reactors. Industrial & Engineering Chemistry Research, 2009; 48, pp. 8890–8905.

95. Joyce A.; Loureiro D.; Rodrigues C.; Castro S.; Small reverse osmosis units using PV systems for water purification in rural places. Desalination, 2001; 137, 39–44. https://doi.org/10.1016/S0011-9164(01)00202-8.

96. Khaydarov R. A.; Khaydarov R. R.; Solar powered direct osmosis desalination. Desalination, 2007; 217, pp. 225–232. https://doi.org/10.1016/j.desal.2007.03.004.

97. Zhang K.; Farahbakhsh K.; Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water research, 2007; 41, pp. 2816–2824. https://doi.org/10.1016/j.watres.2007.03.010.

98. Malato S.; Fernández-Ibáñez P.; Maldonado M. I.; Blanco J.; Gernjak W.; Decontamination and  disinfection of water by solar photocatalysis: recent overview and trends. Catalysis today, 2009; 147, pp. 1–59. https://doi.org/10.1016/j.cattod.2009.06.018.

99. Li Y.; Samad S.; Ahmed F. W.; Abdulkareem S. S.; Hao S.; Rezvani A.; Analysis and enhancement of PV efficiency with hybrid MSFLA–FLC MPPT method under different environmental conditions. Journal of Cleaner Production, 2020; 271, p. 122195. https://doi.org/10.1016/j.jclepro.2020.122195.

Information

Information: Geoinformatica Polonica, 2022, Vol. 21 (2022), pp. 57 - 82

Article type: Original article

Titles:

English:

Review of Solar Energy Applications for Water Treatment; a Global and African Perspective

Polish:

Przegląd zastosowań energii słonecznej do oczyszczania ścieków; perspektywa globalna i afrykańska

Authors

https://orcid.org/0000-0002-1031-2062

Victor Inumidun Fagorite
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0002-1031-2062 Orcid
All publications →

African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria

https://orcid.org/0000-0001-7404-6835

Damian Ifeanyi Njoku
Institute of Metal Research, Chinese Academy of Science
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0001-7404-6835 Orcid
All publications →

Institute of Metal Research, Chinese Academy of Science

African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria

https://orcid.org/0000-0001-5562-9357

Henry Olumayowa Oluwasola
Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
https://orcid.org/0000-0001-5562-9357 Orcid
All publications →

Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria

https://orcid.org/0000-0002-1883-9504

Samuel Okechukwu Onyekuru
Department of Geology, Federal University of Technology, Owerri, Nigeria
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0002-1883-9504 Orcid
All publications →

Department of Geology, Federal University of Technology, Owerri, Nigeria

African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria

https://orcid.org/0000-0003-2708-9298

Emeka Emmanuel Oguzie
Department of Chemistry, Federal University of Technology, Owerri, Nigeria
African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria
https://orcid.org/0000-0003-2708-9298 Orcid
All publications →

Department of Chemistry, Federal University of Technology, Owerri, Nigeria

African Center of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, Nigeria

Published at: 30.12.2022

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Victor Inumidun Fagorite (Author) - 20%
Damian Ifeanyi Njoku (Author) - 20%
Henry Olumayowa Oluwasola (Author) - 20%
Samuel Okechukwu Onyekuru (Author) - 20%
Emeka Emmanuel Oguzie (Author) - 20%

Article corrections:

-

Publication languages:

English