CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH
Choose format
RIS BIB ENDNOTECYCLES CONTAINING SPECIFIED EDGES IN A GRAPH
Publication date: 09.02.2015
Technical Transactions, 2014, Nauki Podstawowe Issue 2 NP (16) 2014, pp. 37-43
https://doi.org/10.4467/2353737XCT.14.298.3386Authors
CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH
The aim of this paper is to prove that if s > 1 and G is a graph of order n > 4s + 6 satisfying
2 > (4n - 4s - 3) / 3 ; then every matching of G lies on a cycle of length at least n-s and hence, in a path of length at least n - s + 1:
Berman K.A., Proof of a conjecture of Haggkvist on cycles and independent edges, Discrete Mathematics 46, 1983, 9—13.
Bondy J.A. and Murty U.S.R., Graph theory with applications, The Macmillan Press LTD, London 1976.
Chvátal V., On Hamilton’s ideals, J. Combin. Theory B 12, 1972, 163—168.
Häggkvist R., On F-hamiltonian graphs in Graph Theory and Related Topics, ed. J.A. Bondy and U.S.R. Murty, Academic Press N.Y. 1979 219—231.
Ore O., Note on hamiltonian circuits, Amer. Math. Monthly 67, 1960, 55.
Wojda, A.P. , Hamiltonian cycles through matchings, Demonstratio Mathematica XXI 2, 1983, 547—553.
Information: Technical Transactions, 2014, Nauki Podstawowe Issue 2 NP (16) 2014, pp. 37-43
Article type: Original article
Titles:
CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH
CYCLES CONTAINING SPECIFIED EDGES IN A GRAPH
Institute of Mathematics, Cracow University of Technology
Published at: 09.02.2015
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
English