FAQ

Austenitic steel surface integrity after EDM in different dielectric liquids

Publication date: 27.12.2017

Technical Transactions, 2017, Volume 12 Year 2017 (114), pp. 231 - 242

https://doi.org/10.4467/2353737XCT.17.222.7765

Authors

,
Agnieszka Żyra
Institute of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
All publications →
,
Rafał Bogucki
Institute of Material Engineering, Cracow University of Technology
All publications →
Sebastian Skoczypiec
Institute of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
All publications →

Titles

Austenitic steel surface integrity after EDM in different dielectric liquids

Abstract

Obróbka elektroerozyjna (EDM) stanowi alternatywę dla konwencjonalnych metod obróbkowych, szczególnie przy kształtowaniu materiałów trudnoskrawalnych, gdy konieczne jest otrzymanie powierzchni o bardzo dobrej jakości. W EDM ciekły dielektryk ma kluczowy wpływ na właściwości technologicznej warstwy wierzchniej materiału obrabianego, umożliwiając zachodzenie kontrolowanych wyładowań elektrycznych pomiędzy elektrodą roboczą a przedmiotem obrabianym, schładzanie i usuwanie produktów powstałych w wyniku obróbki oraz odprowadzanie wygenerowanego w trakcie procesu ciepła. W artykule przedstawiono wpływ dielektryka węglowodorowego i wodnego na wybrane cechy strukturalne i morfologiczne stali nierdzewnej 304 po procesie drążenia elektroerozyjnego. Analizie poddano chropowatość powierzchni, mikrotwardość oraz zmiany składu chemicznego obrabianych powierzchni po przeprowadzonej próbie korozyjnej.

References

[1] Ayesta I., Flaño O., Izquierdo B., Sanchez J.A., Plaza S., Experimental Study on Debris Evacuation during Slot EDMing, Procedia CIRP, Vol. 42, 2016, 6–11.
[2] Banu A., Ali M. Y., Electrical Discharge Machining (EDM ), International Journal of Engineering Materials and Manufacture, Vol. 1, 2016, 3–10.
[3] Boillot P., Peultier J., Use of stainless steels in the industry: Recent and future developments, Procedia Engineering, Vol. 83, 2014, 309–321.
[4] Chakraborty S., Dey V., Ghosh S. K.,. A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics, Precision Engineering, Vol. 40 2015, 1–6.
[5] CoteaţǍ M., Floca A., Dodun O., Ionescu N., Nagîţ G., SlǍtineanu L., Pulse Generator for Obtaining Surfaces of Small Dimensions by Electrical Discharge Machining, Procedia CIRP, Vol. 42, 2016, 715–720.
[6] Dąbrowski L., Świercz R., Zawora J., Struktura geometryczna powierzchni po obróbce elektroerozyjnej elektrodą grafitową i miedzianą – porównanie, Inżynieria Maszyn 16, 2011, 32–39.
[7] Ferraris E., Vleugels J., Guo Y., Bourell D., Kruth J. P., Lauwers B., Shaping of engineering ceramics by electro, chemical and physical processes, CIRP Annals – Manufacturing Technology, Vol. 65, 2016, 761–784.
[8] Goriainov V., Cook R., Latham J.M., Dunlop D.G., Oreffo R.O.C., Bone and metal: an orthopaedic perspective on osseointegration of metals, Acta biomaterialia, Vol. 10, 2014, 4043–4057.
[9] Hayakawa S., Kusafuka Y., Itoigawa F., Nakamura T., Observation of Material Removal from Discharge Spot in Electrical Discharge Machining, Procedia CIRP, Vol. 42 2016, 12–17.
[10] Hollinger J.O., An Introduction to Biomaterials Second Edition, Biomedical Engineering, CRC Press, 2011.
[11] Hourmand M., Sarhan A.A.D., Sayuti M., Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review, The International Journal of Advanced Manufacturing Technology, Vol. 2016, 1–34.
[12] Jha B., Ram K., Rao M., An overview of technology and research in electrode design and manufacturing in sinking electrical discharge machining, Journal of Engineering Science and Technology Review, Vol. 2, 2011, 118–130.
[13] Kitamura T., Kunieda M., Abe K., High-speed imaging of EDM gap phenomena using transparent electrodes, Procedia CIRP, Vol. 6, 2013, 314–319.
[14] Kitamura T., Kunieda M., Clarification of EDM gap phenomena using transparent electrodes, CIRP Annals – Manufacturing Technology, Vol. 63, 2014, 213–216.
[15] Klink A., Process Signatures of EDM and ECM Processes – Overview from Part Functionality and Surface Modification Point of View, Procedia CIRP, Vol. 42, 2016, 240–245.
[16] Koyano T., Hosokawa A., Suzuki S., Ueda T., Influence of external hydrostatic pressure on machining characteristics of electrical discharge machining, CIRP Annals – Manufacturing Technology, Vol. 64, 2015, 229–232.
[17] Kozak J., Rozenek M., Dabrowski L., Study of electrical discharge machining using powder-suspended working media, Journal of Engineering Manufacture 217 (11), 2003, 1597–1602.
[18] Oniszczuk D., Świercz R., An investigation into the impact of electrical pulse character on surface texture in the EDM and WEDM process, Advances in Manufacturing Science and Technology, 36.3, 2012, 43–53.
[19] Rajurkar K.P., Sundaram M.M., Malshe A.P., Review of Electrochemical and Electrodischarge Machining, CIRP, Vol. 6, 2013, 13–26.
[20] Risto M., Haas R., Munz M., Optimization of the EDM Drilling Process to Increase the Productivity and Geometrical Accuracy, Procedia CIRP, Vol. 42, 2016, 537–542.
[21] Świercz R., Wpływ charakteru impulsów natężenia prądu i napięcia elektrycznego na strukturę warstwy wierzchniej po obróbce EDM, Politechnika Warszawska, Warszawa 2013.
[22] Torres A., Puertas I., Luis C.J., Modelling of surface finish, electrode wear and material removal rate in electrical discharge machining of hard-to-machine alloys, Precision Engineering, Vol. 40, 2015, 33–45.
[23] Tripathy S., Tripathy D.K, Optimization of Process Parameters and Investigation on Surface Characteristics During EDM and Powder Mixed EDM, Springer Singapore, Vol. 2017, 385–391.
[24] Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, Vol. 83, 2016, 127–141.
[25] Zhang M., Zhang Q., Zhu G., Liu Q., Zhang J., Effects of Some Process Parameters on the Impulse Force in Single Pulsed EDM, Procedia CIRP, Vol. 42, 2016, 627–631.
[26] Zhang Y., Liu Y., Shen Y., Ji R., Li Z., Zheng C., Investigation on the influence of the dielectrics on the material removal characteristics of EDM, Journal of Materials Processing Technology, Vol. 214, 2014, 1052–1061.
[27] http://www.sodick.jp/product/consumables/fluids/p01_01.html (access: 17.11.2016).
[28] http://www.holepop.com/dielectric-fluid (access: 17.11.2016).

Information

Information: Technical Transactions, 2017, Volume 12 Year 2017 (114), pp. 231 - 242

Article type: Original article

Titles:

Polish:

Austenitic steel surface integrity after EDM in different dielectric liquids

English:

Austenitic steel surface integrity after EDM in different dielectric liquids

Authors

Institute of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology

Institute of Material Engineering, Cracow University of Technology

Institute of Production Engineering, Faculty of Mechanical Engineering, Cracow University of Technology

Published at: 27.12.2017

Article status: Open

Licence: None

Percentage share of authors:

Agnieszka Żyra (Author) - 33%
Rafał Bogucki (Author) - 33%
Sebastian Skoczypiec (Author) - 34%

Article corrections:

-

Publication languages:

English