FAQ
Jagiellonian University logo

The function of ciliopathy protein FOP on cilia and cortical microtubule cytoskeleton in Euplotes amieti

Publication date: 18.04.2024

Acta Protozoologica, 2023, Volume 62, pp. 45 - 56

https://doi.org/10.4467/16890027AP.23.005.18868

Authors

,
Junlin WU
Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
All publications →
,
Jiaqi Yin
Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
All publications →
,
Zixiang Xu
Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
All publications →
,
Yingli Liu
Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
All publications →
,
Huanyong Qin
Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
All publications →
Xin Sheng
Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China; School of Life Science, East China Normal University, Shanghai, China
All publications →

Titles

The function of ciliopathy protein FOP on cilia and cortical microtubule cytoskeleton in Euplotes amieti

Abstract

FOP is a centriole satellite protein involved in ciliogenesis. Although centriole satellites are involved in centrosome and ciliumrelated protein trafficking, their functions related to ciliary assembly and maintenance of ciliary microtubule stability remain unclear. In this study, the function of the FOP gene in Euplotes amieti was investigated by interfering with its expression using RNAi. As a result, expression levels of the ciliary assembly-related proteins BBS8 and IFT88 were down-regulated. Swimming speeds also decreased and the Euplotes were only able to spin in circles, which suggested that the FOP protein is an important protein involved in ciliary motion. Further observations of Euplotes amieti microstructure and ultrastructure via immunofluorescence and transmission electron microscopy revealed that FOP not only participated in the formation of the ventral ciliary basal body but also played an important role in the maintenance of cortical microtubules, which is fundamental for the morphological structure of Euplotes amieti.

References

Download references

Acquaviva C., Chevrier V., Chauvin J. P., Fournier G., Birnbaum D., Rosnet O. (2009) The centrosomal FOP protein is required for cell cycle progression and survival. Cell Cycle 8: 1217–1227

Ammermann D. (1971) Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatusChromosoma 33: 209–238

Bayless B. A., Galati D. F., Pearson C. G. (2015) Tetrahymena basal bodies. Cilia 5: 1–5

Berbari N. F., Sharma N., Malarkey E. B., Pieczynski J. N., Boddu R., Gaertig J., Guay-Woodford L., Yoder B. K. (2013) Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton 70: 24–31

Bornens M. (2002) Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14: 25–34

Bouhouche K., Valentine M. S., Le Borgne P., Lemullois M., Yano J., Lodh S., Nabi A., Tassin A. M., Van Houten J. L. (2022) Paramecium, a model to study ciliary beating and ciliogenesis: Insights from cutting-edge approaches. Front. Cell Dev. Biol. 10: 847908

Cabaud O., Roubin R., Comte A., Bascunana V., Sergé A., Sedjaï F., Birnbaum D., Rosnet O., Acquaviva C. (2018) Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum. Mol. Genet. 27: 3377–3391

Chen X., Shi Z., Yang F., Zhou T., Xie S. (2023) Deciphering cilia and ciliopathies using proteomic approaches. FEBS J. 290: 2590–2603

Deane J. A., Cole D. G., Seeley E. S., Diener D. R., Rosenbaum J. L. (2001) Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11: 1586–1590

Dentler W. L. (1980) Structures linking the tips of ciliary and flagellar microtubules to the membrane. J. Cell. Sci. 42: 207–220

Fleury A. (1991) Dynamics of the cytoskeleton during morphogenesis in the ciliate Euplotes: II. Cortex and continuous microtubular systems. Eur. J. Protistol. 27: 220–237

Forsythe E., Kenny J., Bacchelli C., Beales P. L. (2018) Managing Bardet – Biedl syndrome – now and in the future. Front. Pediatr. 6: 23

Gherman A., Davis E. E., Katsanis N. (2006) The ciliary proteome database: An integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38: 961–962

Goetz S. C., Anderson K. V. (2010) The primary cilium: A signaling centre during vertebrate development. Nat. Rev. Genet. 11: 331–344

Gogendeau D., Lemullois M., Le Borgne P., Castelli M., Aubusson-Fleury A., Arnaiz O., Cohen J., Vesque C., Schneider-Maunoury S., Bouhouche K., Koll F., Tassin, A. M. (2020) MKSNPHP module proteins control ciliary shedding at the transition zone. PLOS Biol. 18: e3000640

Ishikawa H., Marshall W. F. (2011) Ciliogenesis: Building the cell’s antenna. Nat. Rev. Mol. Cell Bio. 12: 222–234

Lee J. Y., Stearns T. (2013) FOP is a centriolar satellite protein involved in ciliogenesis. PlOS one 8: e58589

Libusová L., Dráber P. (2006) Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. Protoplasma 227: 65–76

Loktev A. V., Zhang Q., Beck J. S., Searby C. C., Scheetz T. E., Bazan J. F., Slusarski D. C., Sheffield V. C., Jackson P. K., Nachury M. V. (2008) A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev. Cell 15: 854–865

Meehl J. B., Bayless B. A., Giddings T. H., Pearson C. G., Winey M. (2016) Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Mol. Bio. Cell 27: 2394–2403

Mikolajka A., Yan X., Popowicz G. M., Smialowski P., Nigg E. A., Holak T. A. (2006) Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J. Mol. Biol. 359: 863–875

Mockel A., Perdomo Y., Stutzmann F., Letsch J., Marion V., Dollfus H. (2011) Retinal dystrophy in Bardet–Biedl syndrome and related syndromic ciliopathies. Prog. Retin. Eye Res. 30: 258–274

Paschka A. G., Jönsson F., Maier V., Möllenbeck M., Paeschke K., Postberg J., Rupprecht S., Lipps H. J. (2003) The use of RNAi to analyze gene function in spirotrichous ciliates. Eur. J. Protistol. 39: 449–454

Pearson C. G., Winey M. (2009) Basal body assembly in ciliates: The power of numbers. Traffic 10: 461–471

Quarantotti V., Chen J. X., Tischer J., Gonzalez Tejedo C., Papachristou E. K., D’Santos C. S., Kilmartin J. V., Miller M. L.,

Gergely F. (2019) Centriolar satellites are acentriolar assemblies of centrosomal proteins. EMBO J. 38: e101082

Reiter J. F., Leroux M. R. (2017) Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Bio. 18: 533–547

Shen C., Gao J., Sheng Y., Dou J., Zhou F., Zheng X., Ko R., Tang X., Zhu C., Yin X., Sun L., Cui Y., Zhang X. (2016) Genetic susceptibility to vitiligo: GWAS approaches for identifying vitiligo susceptibility genes and loci. Front. Genet. 7: 3

Stearns T., Evans L., Kirschner M. (1991) γ-Tubulin is a highly conserved component of the centrosome. Cell 65: 825–836

Vizmanos J. L., Hernández R., Vidal M. J., Larráyoz M. J., Odero M. D., Marín J., Ardanaz M. J., Calasanz M. J., Cross, N. C. (2004) Clinical variability of patients with the t (6; 8)(q27; p12) and FGFR1OP-FGFR1 fusion: Two further cases. The Hematology Journal: The Official Journal of the European Haematology Association 5: 534–537

Williams C. L., Li C., Kida K., Inglis P. N., Mohan S., Semenec L., Bialas N. J., Stupay R. M., Chen N., Blacque O. E., Yoder B. K., Leroux M. R. (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol.  92: 1023–1041

Yan X., Habedanck R., Nigg E. A. (2006) A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17: 634–64

Information

Information: Acta Protozoologica, 2023, Volume 62, pp. 45 - 56

Article type: Original article

Authors

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China

Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China; School of Life Science, East China Normal University, Shanghai, China

Published at: 18.04.2024

Received at: 03.08.2023

Accepted at: 06.11.2023

Article status: Open

Licence: CC BY  licence icon

Percentage share of authors:

Junlin WU (Author) - 16.66%
Jiaqi Yin (Author) - 16.66%
Zixiang Xu (Author) - 16.66%
Yingli Liu (Author) - 16.66%
Huanyong Qin (Author) - 16.66%
Xin Sheng (Author) - 16.66%

Article corrections:

-

Publication languages:

English