Acquaviva C., Chevrier V., Chauvin J. P., Fournier G., Birnbaum D., Rosnet O. (2009) The centrosomal FOP protein is required for cell cycle progression and survival. Cell Cycle 8: 1217–1227 Ammermann D. (1971) Morphology and development of the macronuclei of the ciliates Stylonychia mytilus and Euplotes aediculatus. Chromosoma 33: 209–238 Bayless B. A., Galati D. F., Pearson C. G. (2015) Tetrahymena basal bodies. Cilia 5: 1–5 Berbari N. F., Sharma N., Malarkey E. B., Pieczynski J. N., Boddu R., Gaertig J., Guay-Woodford L., Yoder B. K. (2013) Microtubule modifications and stability are altered by cilia perturbation and in cystic kidney disease. Cytoskeleton 70: 24–31 Bornens M. (2002) Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14: 25–34 Bouhouche K., Valentine M. S., Le Borgne P., Lemullois M., Yano J., Lodh S., Nabi A., Tassin A. M., Van Houten J. L. (2022) Paramecium, a model to study ciliary beating and ciliogenesis: Insights from cutting-edge approaches. Front. Cell Dev. Biol. 10: 847908 Cabaud O., Roubin R., Comte A., Bascunana V., Sergé A., Sedjaï F., Birnbaum D., Rosnet O., Acquaviva C. (2018) Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum. Mol. Genet. 27: 3377–3391 Chen X., Shi Z., Yang F., Zhou T., Xie S. (2023) Deciphering cilia and ciliopathies using proteomic approaches. FEBS J. 290: 2590–2603 Deane J. A., Cole D. G., Seeley E. S., Diener D. R., Rosenbaum J. L. (2001) Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11: 1586–1590 Dentler W. L. (1980) Structures linking the tips of ciliary and flagellar microtubules to the membrane. J. Cell. Sci. 42: 207–220 Fleury A. (1991) Dynamics of the cytoskeleton during morphogenesis in the ciliate Euplotes: II. Cortex and continuous microtubular systems. Eur. J. Protistol. 27: 220–237 Forsythe E., Kenny J., Bacchelli C., Beales P. L. (2018) Managing Bardet – Biedl syndrome – now and in the future. Front. Pediatr. 6: 23 Gherman A., Davis E. E., Katsanis N. (2006) The ciliary proteome database: An integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38: 961–962 Goetz S. C., Anderson K. V. (2010) The primary cilium: A signaling centre during vertebrate development. Nat. Rev. Genet. 11: 331–344 Gogendeau D., Lemullois M., Le Borgne P., Castelli M., Aubusson-Fleury A., Arnaiz O., Cohen J., Vesque C., Schneider-Maunoury S., Bouhouche K., Koll F., Tassin, A. M. (2020) MKSNPHP module proteins control ciliary shedding at the transition zone. PLOS Biol. 18: e3000640 Ishikawa H., Marshall W. F. (2011) Ciliogenesis: Building the cell’s antenna. Nat. Rev. Mol. Cell Bio. 12: 222–234 Lee J. Y., Stearns T. (2013) FOP is a centriolar satellite protein involved in ciliogenesis. PlOS one 8: e58589 Libusová L., Dráber P. (2006) Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. Protoplasma 227: 65–76 Loktev A. V., Zhang Q., Beck J. S., Searby C. C., Scheetz T. E., Bazan J. F., Slusarski D. C., Sheffield V. C., Jackson P. K., Nachury M. V. (2008) A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev. Cell 15: 854–865 Meehl J. B., Bayless B. A., Giddings T. H., Pearson C. G., Winey M. (2016) Tetrahymena Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Mol. Bio. Cell 27: 2394–2403 Mikolajka A., Yan X., Popowicz G. M., Smialowski P., Nigg E. A., Holak T. A. (2006) Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J. Mol. Biol. 359: 863–875 Mockel A., Perdomo Y., Stutzmann F., Letsch J., Marion V., Dollfus H. (2011) Retinal dystrophy in Bardet–Biedl syndrome and related syndromic ciliopathies. Prog. Retin. Eye Res. 30: 258–274 Paschka A. G., Jönsson F., Maier V., Möllenbeck M., Paeschke K., Postberg J., Rupprecht S., Lipps H. J. (2003) The use of RNAi to analyze gene function in spirotrichous ciliates. Eur. J. Protistol. 39: 449–454 Pearson C. G., Winey M. (2009) Basal body assembly in ciliates: The power of numbers. Traffic 10: 461–471 Quarantotti V., Chen J. X., Tischer J., Gonzalez Tejedo C., Papachristou E. K., D’Santos C. S., Kilmartin J. V., Miller M. L., Gergely F. (2019) Centriolar satellites are acentriolar assemblies of centrosomal proteins. EMBO J. 38: e101082 Reiter J. F., Leroux M. R. (2017) Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Bio. 18: 533–547 Shen C., Gao J., Sheng Y., Dou J., Zhou F., Zheng X., Ko R., Tang X., Zhu C., Yin X., Sun L., Cui Y., Zhang X. (2016) Genetic susceptibility to vitiligo: GWAS approaches for identifying vitiligo susceptibility genes and loci. Front. Genet. 7: 3 Stearns T., Evans L., Kirschner M. (1991) γ-Tubulin is a highly conserved component of the centrosome. Cell 65: 825–836 Vizmanos J. L., Hernández R., Vidal M. J., Larráyoz M. J., Odero M. D., Marín J., Ardanaz M. J., Calasanz M. J., Cross, N. C. (2004) Clinical variability of patients with the t (6; 8)(q27; p12) and FGFR1OP-FGFR1 fusion: Two further cases. The Hematology Journal: The Official Journal of the European Haematology Association 5: 534–537 Williams C. L., Li C., Kida K., Inglis P. N., Mohan S., Semenec L., Bialas N. J., Stupay R. M., Chen N., Blacque O. E., Yoder B. K., Leroux M. R. (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol.  92: 1023–1041 Yan X., Habedanck R., Nigg E. A. (2006) A complex of two centrosomal proteins, CAP350 and FOP, cooperates with EB1 in microtubule anchoring. Mol. Biol. Cell 17: 634–64