The Challenges of Incorporating Realistic Simulations of Marine Protists in Biogeochemically Based Mathematical Models
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEThe Challenges of Incorporating Realistic Simulations of Marine Protists in Biogeochemically Based Mathematical Models
Publication date: 07.02.2014
Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 129 - 138
https://doi.org/10.4467/16890027AP.14.012.1449Authors
The Challenges of Incorporating Realistic Simulations of Marine Protists in Biogeochemically Based Mathematical Models
Protists are key components of marine microbial communities and hence of the biogeochemical mathematical models that are used to study the interaction between organisms, and the associated cycling of carbon and other nutrients. With increased computing power, models of microbial communities have markedly increased in complexity in the last 20 years, from relatively simple single nutrient currency, nutrient-phytoplankton-zooplankton-detritus (NPZD) models to plankton functional type (PFT) or trait based models of multiple organisms, or individual based models (IBMs) of specific organisms. However, our recognition, if not parameterisation, of the physiological processes that underpin both autotrophic and heterotrophic protist nutrition and growth arguably have increased faster than our modelling capability, generating a wealth of new modelling challenges. This paper therefore reviews historical development, current capability, and the future directions and challenges in protist based mathematical modelling.
Allen J. I., Aiken J., Anderson T. R., Buitenhuis E., Cornell S., Geider R. J., Haines K., Hirata T., Holt J., Le Quéré C., Hard,man-Mountford N., Ross O. N., Sinha B., While J. (2010) Ma,rine ecosystem models for earth systems applications: The Mar,QUEST experience. J. Mar. Syst. 81: 19–33
Allen J. I., Polimene L. (2011) Linking physiology to ecology: To,wards a new generation of plankton models. J. Plank. Res. 33: 989–997
Anderson T. R. (2005) Plankton functional type modelling: Run,ning before we can walk? J. Plank. Res. 27: 1073–1081
Anderson T. R. (2010) Progress in marine ecosystem modelling and the “unreasonable effectiveness of mathematics”. J. Mar. Syst. 81: 4–11
Aumont O. (2003) An ecosystem model of the global ocean includ,ing Fe, Si, P colimitations. Global Biogeochem. Cycles 17: 1060 Davidson K. (1996) Modelling microbial food webs. Mar. Ecol. Prog. Ser. 145: 145–296
Davidson K., Flynn K. J., Cunningham A. (1991) Relationships be,tween photopigments, cell carbon, cell nitrogen and growth rate for a marine nanoflagellate. J. Exp. Mar. Biol. Ecol. 153: 87–96
Davidson K., Cunningham A., Flynn K. J. (1993) Modelling tem,poral decoupling between biomass and numbers during the transient nitrogen-limited growth of a marine phytoflagellate. J. Plank. Res. 15: 351–359
Davidson K., Gurney W. S. C. (1999) An investigation of non,steady-state algal growth. II. Mathematical modelling of co,nutrient-limited algal growth. J. Plank. Res. 21: 839–858
Davidson K., Gilpin L. C., Hart M. C., Fouilland E., Mitchell E., Calleja I. A., Laurent C., Miller A. E. J., Leakey R. J. G. (2007). The influence of the balance of inorganic and organic nitro,gen on the trophic dynamics of microbial food webs. Limnol. Oceanogr. 52: 2147–2163
Davidson K., Sayegh F., Montagnes D. J. S. (2011) Oxyrrhis marina based models as a tool to interpret protozoan population dynam,ics. J. Plank. Res. 33: 651–663
Davidson K., Gowen R. J., Tett P., Bresnan E., Harrison P. J., Mckinney A., Milligan S., Mills D. K., Silke J., Crooks A. (2012) Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Est. Coast. Shelf Sci. 115: 399–413
Droop M. R. (1968) Vitamin B-12 and marine ecology. IV. The ki,netics of uptake, growth, and inhibition in Monochrysis lutheri. J. Mar. Biol. Ass. U.K. 48: 689–733
Fasham M. J. R. (1993) Modelling the marine biota. In: The Global Carbon Cycle. NATO ASI series I 15: 457–504
Fasham M. J. R., Ducklow H. W., Mckelvie S. M. (1990) A nitro,gen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48: 591–639
Fenton A., Spencer M., Montagnes D. J. S. (2010) Parameterising variable assimilation efficiency in predator-prey models. Oikos 119: 1000–1010
Flynn K. J. (2001) A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J. Plank. Res. 23: 977–997
Flynn K. J. (2003) Do we need complex mechanistic photoacclima,tion models for phytoplankton? Limnol. Oceanogr. 48: 2243– 2249
Flynn K. J. (2005) Castles built on sand: Dysfunctionality in plank,ton models and the inadequacy of dialogue between biologists and modellers. J. Plank. Res. 27: 1205–1210
Flynn K. J. (2008) The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J. Plank. Res. 30: 423–438
Flynn K. J. (2010) Ecological modelling in a sea of variable stoi,chiometry: Dysfunctionality and the legacy of Redfield and Monod. Prog. Oceanogr. 84: 52–65
Flynn K. J., Davidson K., Cunningham A. (1996) Prey selection and rejection by a microflagellate: Implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196: 357–372
Flynn K. J., Mitra A. (2009) Building the “perfect beast”: Modelling mixotrophic plankton. J. Plank. Res. 31: 965–992
Flynn K. J., Stoecker D. K., Mitra A., Raven J. A., Glibert P. M., Hansen P. J., Granli E., Burkholder J. M. (2012) Misuse of the phytoplankton-zooplankton dichotomy: The need to assign organisms as mixotrophs within plankton functional types. J. Plank. Res. 35: 3–11
Friedrichs M. A. M., Dusenberry J. A., Anderson L. A., Armstrong R. A., Chai F., Christian J. R., Doney S. C., Dunne J., Fujii M., Hood R., McGillicuddy D. J., Moore J. K., Schartau M., Spitz Y. H., Wiggert J. D. (2007) Assessment of skill and portabil,ity in regional marine biogeochemical models: Role of multiple planktonic groups. J. Geophys. Res. 112: C08001
Geider R. J., Maclntyre H. L., Kana T. M. (1998) A dynamic regula,tory model of phytoplanktonic temperature acclimation to light, nutrients, and. Limnol. Oceoangr. 43: 679–694
Geider R. J., La Roche J. (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. E. J. Phycol. 37: 1–17
Hammer A., Grüttner C., Schumann R. (2001) New biocompat,ible tracer particles: Use for estimation of microzooplankton grazing, digestion, and growth rates. Aquat. Micro. Ecol. 24: 153–161
Hofmann E. E. (2010) Plankton functional group models – An as,sessment. Prog. Oceanogr. 84: 16–19
Hood R. R., Laws E. A., Armstrong R. A., Bates N.R., Brown C.W., Carlson C. A., Chai F., Doney S. C., Falkowski P. G., Feely R. A., Friedrichs M. A. M., Landry M. R., Moore J. K., Nelson D. M., Richardson T. L., Salihoglu B., Schartau M., Toole D. A., Wiggert J. D. (2006) Pelagic functional group modeling: Prog,ress, challenges and prospects. Deep Sea Res. II 53: 459–512
Jones H. (1997) A classification of mixotrophic protists based on their behaviour. Freshwater Biol. 37: 35–43
Kimmance S., Atkinson D., Montagnes D. J. S. (2006) Do tempera,ture–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis ma,rina. Aquat. Microb. Ecol. 42: 63–73
Leblanc K., Arístegui J., Armand L., Assmy P., Beker B., Bode A., Breton E., Cornet V., Gibson J., Gosselin M.-P., Kopczynska E., Marshall H., Peloquin J., Piontkovski S., Poulton A. J., Qué,guiner B., Schiebel R., Shipe R., Stefels J., van Leeuwe M. A., Varela M., Widdicombe C., Yallop M. (2012) A global diatom database – abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4: 149–165
Le Quere C., Harrison S., Prentice I., Buitenhuis E., Aumonts O., Bopp L., Claustre H., da Cuma C., Geider R., Giraud X., Klass C., Kohfeld K. E., Legendre L., Manizza M., Platt T., Rivkin R. B., Sathyendranath S., Uitz J., Watson A., Wolf-Gladrow D. (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol. 11: 2016–2040
Litchman E., Klausmeier C. A., Miller J. R., Schofield O. M., Falkowski P. G. (2006) Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Bio,geosciences 3: 585–606
Litchman E., Klausmeier C. A. (2008) Trait based community ecol,ogy of phytoplankton. Annu. Rev. Ecol. Evol. S. 39: 615–639
Mariani P., Anderson K. H., Visser A. W., Barton A. D., Kiorbe T. (2013) Control of plankton seasonal succession by adaptive grazing. Limnol. Ocenogr. 58: 173–184
Minter E. J. A., Fenton J., Cooper J., Montagnes D. J. S. (2011) Prey-dependent mortality rate: a critical parameter in microbial models. Microb. Ecol. 62: 155–161
Mitra A. (2005) Predator-prey interactions: Is “ecological stoichi,ometry” sufficient when good food goes bad? J. Plank. Res. 27: 393–399
Mitra A., Davidson K., Flynn K. J. (2003) The influence of changes in predation rates on marine microbial predator/prey interac,tions: a modelling study. Acta Oecologica 24: S359–S367
Mitra A., Flynn K. J. (2010) Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts? J. Mar. Syst. 83: 158–169
Monod J. (1942) Recherches sur la croissance des cultures bacteriennes. Herman, Paris
Montagnes D. J. S., Barbosa A., Boenigk J., Davidson K., Jürgens K., Macek M., Parry J., Roberts E. C., Šimek K. (2008a) Selec,tive feeding behaviour of key free-living protists: Avenues for continued study. Aquat. Micro. Ecol. 53: 83–98
Montagnes D. J. S., Morgan G., Bissinger J. E., Atkinson D., Weisse T. (2008b) Short-term temperature change may impact freshwa,ter carbon flux: a microbial perspective. Global Change Biol. 14: 2823–2838
Montagnes D. J. S., Fenton A. (2012) Prey-abundance affects zoo,plankton assimilation efficiency and the outcome of biogeo,chemical models. Ecol. Model. 243: 1–7
Pahlow M., Oschlies A. (2013) Optimal allocation backs Droop’s cell-quota model. Mar. Ecol. Prog. Ser. 473: 1–5
Palmer J. R., Totterdell I. J. (2001) Production and export in a global ocean ecosystem model. Deep Sea Res. I 48: 1169–1198
Peters F., Gross T. (1994) Increased grazing rates of microplankton in response to small-scale turbulence. Mar. Ecol. Prog. Ser. 115: 299–307
Raine R., McDermott G., Silke J., Lyons K., Nolan G., Cusack C. (2010) A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland. J. Mar. Syst. 83: 150–157
Ross O., Geider R. (2009) New cell-based model of photosynthesis and photo-acclimation: Accumulation and mobilisation of ener,gy reserves in phytoplankton. Mar. Ecol. Prog. Ser. 383: 53–71
Sterner R. W., Elser J. J. (2002) Ecological stoichiometry: The bi,ology of elements from molecules to the biosphere. Princeton University Press, New Jersey
Stock C. A., McGillicuddy D. J., Solow A. R., Anderson D. M. (2005) Evaluating hypotheses for the initiation and develop,ment of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical–biological model. Deep Sea Res. II. 52: 2715–2744
Stoecker D. K. (1998) Conceptual models of mixotrophy in plank,tonic protists and some ecological and evolutionary implica,tions. E. J. Protistol. 34: 281–290
Strom S. L. (1993) Production of phaeopigments by marine pro,tozoa: Results of laboratory experiments analysed by HPLC. Deep Sea Res. I 40: 57–80
Tett P., Portilla E., Gillibrand P. A., Inall M. (2011) Carrying and assimilative capacities: The ACExR-LESV model for sea-loch aquaculture. Aquaculture Res. 42: 51–67
Touzet N., Davidson K., Pete R., Flanagan K., McCoy G. R., Amzil Z., Maher M., Chapelle A., Raine R. (2010) Co-occurrence of the West European (Gr.III) and North American (Gr.I) ribotypes of Alexandrium tamarense (Dinophyceae) in Shetland, Scot,land. Protist 161: 370–84
Vanhoutte-Brunier A., Fernand L., Ménesguen A., Lyons S., Gohin F., Cugier P. (2008) Modelling the Karenia mikimotoi bloom that occurred in the western English Channel during summer 2003. Ecol. Model. 210: 351–376
Ward B. A., Dutkiewicz S., Barton A. D., Follows M. J. (2011) Bio,physical aspects of resource acquisition and competition in al,gal mixotrophs. Am. Nat. 178: 98–112
Ward B. A., Dutkiewicz S., Jahn O., Follows M. J. (2012) A size,structured food-web model for the global ocean. Limnol. Oceanogr. 57: 1877–1891
Yang Z., Lowe C. D., Crowther W., Fenton A., Watts P. C., Mon,tagnes D. J. S. (2012) Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dy-
namics. The ISME journal: doi:10.1038/ismej.2012.117
Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 129 - 138
Article type: Original article
Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, UK
Published at: 07.02.2014
Article status: Open
Licence: None
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 1857
Number of downloads: 1536