FAQ
Jagiellonian University logo

The Challenges of Incorporating Realistic Simulations of Marine Protists in Biogeochemically Based Mathematical Models

Publication date: 07.02.2014

Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 129 - 138

https://doi.org/10.4467/16890027AP.14.012.1449

Authors

Keith Davidson
Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, UK
All publications →

Titles

The Challenges of Incorporating Realistic Simulations of Marine Protists in Biogeochemically Based Mathematical Models

Abstract

Protists are key components of marine microbial communities and hence of the biogeochemical mathematical models that are used to study the interaction between organisms, and the associated cycling of carbon and other nutrients. With increased computing power, models of microbial communities have markedly increased in complexity in the last 20 years, from relatively simple single nutrient currency, nutrient-phytoplankton-zooplankton-detritus (NPZD) models to plankton functional type (PFT) or trait based models of multiple organisms, or individual based models (IBMs) of specific organisms. However, our recognition, if not parameterisation, of the physiological processes that underpin both autotrophic and heterotrophic protist nutrition and growth arguably have increased faster than our modelling capability, generating a wealth of new modelling challenges. This paper therefore reviews historical development, current capability, and the future directions and challenges in protist based mathematical modelling.

References

Download references

Allen J. I., Aiken J., Anderson T. R., Buitenhuis E., Cornell S., Geider R. J., Haines K., Hirata T., Holt J., Le Quéré C., Hard,man-Mountford N., Ross O. N., Sinha B., While J. (2010) Ma,rine ecosystem models for earth systems applications: The Mar,QUEST experience. J. Mar. Syst. 81: 19–33

Allen J. I., Polimene L. (2011) Linking physiology to ecology: To,wards a new generation of plankton models. J. Plank. Res. 33: 989–997

Anderson T. R. (2005) Plankton functional type modelling: Run,ning before we can walk? J. Plank. Res. 27: 1073–1081

Anderson T. R. (2010) Progress in marine ecosystem modelling and the “unreasonable effectiveness of mathematics”. J. Mar. Syst. 81: 4–11

Aumont O. (2003) An ecosystem model of the global ocean includ,ing Fe, Si, P colimitations. Global Biogeochem. Cycles 17: 1060 Davidson K. (1996) Modelling microbial food webs. Mar. Ecol. Prog. Ser. 145: 145–296

Davidson K., Flynn K. J., Cunningham A. (1991) Relationships be,tween photopigments, cell carbon, cell nitrogen and growth rate for a marine nanoflagellate. J. Exp. Mar. Biol. Ecol. 153: 87–96

Davidson K., Cunningham A., Flynn K. J. (1993) Modelling tem,poral decoupling between biomass and numbers during the transient nitrogen-limited growth of a marine phytoflagellate. J. Plank. Res. 15: 351–359

Davidson K., Gurney W. S. C. (1999) An investigation of non,steady-state algal growth. II. Mathematical modelling of co,nutrient-limited algal growth. J. Plank. Res. 21: 839–858

Davidson K., Gilpin L. C., Hart M. C., Fouilland E., Mitchell E., Calleja I. A., Laurent C., Miller A. E. J., Leakey R. J. G. (2007). The influence of the balance of inorganic and organic nitro,gen on the trophic dynamics of microbial food webs. Limnol. Oceanogr. 52: 2147–2163

Davidson K., Sayegh F., Montagnes D. J. S. (2011) Oxyrrhis marina based models as a tool to interpret protozoan population dynam,ics. J. Plank. Res. 33: 651–663

Davidson K., Gowen R. J., Tett P., Bresnan E., Harrison P. J., Mckinney A., Milligan S., Mills D. K., Silke J., Crooks A. (2012) Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Est. Coast. Shelf Sci. 115: 399–413

Droop M. R. (1968) Vitamin B-12 and marine ecology. IV. The ki,netics of uptake, growth, and inhibition in Monochrysis lutheri. J. Mar. Biol. Ass. U.K. 48: 689–733

Fasham M. J. R. (1993) Modelling the marine biota. In: The Global Carbon Cycle. NATO ASI series I 15: 457–504

Fasham M. J. R., Ducklow H. W., Mckelvie S. M. (1990) A nitro,gen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48: 591–639

Fenton A., Spencer M., Montagnes D. J. S. (2010) Parameterising variable assimilation efficiency in predator-prey models. Oikos 119: 1000–1010

Flynn K. J. (2001) A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J. Plank. Res. 23: 977–997

Flynn K. J. (2003) Do we need complex mechanistic photoacclima,tion models for phytoplankton? Limnol. Oceanogr. 48: 2243– 2249

Flynn K. J. (2005) Castles built on sand: Dysfunctionality in plank,ton models and the inadequacy of dialogue between biologists and modellers. J. Plank. Res. 27: 1205–1210

Flynn K. J. (2008) The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J. Plank. Res. 30: 423–438

Flynn K. J. (2010) Ecological modelling in a sea of variable stoi,chiometry: Dysfunctionality and the legacy of Redfield and Monod. Prog. Oceanogr. 84: 52–65

Flynn K. J., Davidson K., Cunningham A. (1996) Prey selection and rejection by a microflagellate: Implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196: 357–372

Flynn K. J., Mitra A. (2009) Building the “perfect beast”: Modelling mixotrophic plankton. J. Plank. Res. 31: 965–992

Flynn K. J., Stoecker D. K., Mitra A., Raven J. A., Glibert P. M., Hansen P. J., Granli E., Burkholder J. M. (2012) Misuse of the phytoplankton-zooplankton dichotomy: The need to assign organisms as mixotrophs within plankton functional types. J. Plank. Res. 35: 3–11

Friedrichs M. A. M., Dusenberry J. A., Anderson L. A., Armstrong R. A., Chai F., Christian J. R., Doney S. C., Dunne J., Fujii M., Hood R., McGillicuddy D. J., Moore J. K., Schartau M., Spitz Y. H., Wiggert J. D. (2007) Assessment of skill and portabil,ity in regional marine biogeochemical models: Role of multiple planktonic groups. J. Geophys. Res. 112: C08001

Geider R. J., Maclntyre H. L., Kana T. M. (1998) A dynamic regula,tory model of phytoplanktonic temperature acclimation to light, nutrients, and. Limnol. Oceoangr. 43: 679–694

Geider R. J., La Roche J. (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. E. J. Phycol. 37: 1–17

Hammer A., Grüttner C., Schumann R. (2001) New biocompat,ible tracer particles: Use for estimation of microzooplankton grazing, digestion, and growth rates. Aquat. Micro. Ecol. 24: 153–161

Hofmann E. E. (2010) Plankton functional group models – An as,sessment. Prog. Oceanogr. 84: 16–19

Hood R. R., Laws E. A., Armstrong R. A., Bates N.R., Brown C.W., Carlson C. A., Chai F., Doney S. C., Falkowski P. G., Feely R. A., Friedrichs M. A. M., Landry M. R., Moore J. K., Nelson D. M., Richardson T. L., Salihoglu B., Schartau M., Toole D. A., Wiggert J. D. (2006) Pelagic functional group modeling: Prog,ress, challenges and prospects. Deep Sea Res. II 53: 459–512

Jones H. (1997) A classification of mixotrophic protists based on their behaviour. Freshwater Biol. 37: 35–43

Kimmance S., Atkinson D., Montagnes D. J. S. (2006) Do tempera,ture–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis ma,rina. Aquat. Microb. Ecol. 42: 63–73

Leblanc K., Arístegui J., Armand L., Assmy P., Beker B., Bode A., Breton E., Cornet V., Gibson J., Gosselin M.-P., Kopczynska E., Marshall H., Peloquin J., Piontkovski S., Poulton A. J., Qué,guiner B., Schiebel R., Shipe R., Stefels J., van Leeuwe M. A., Varela M., Widdicombe C., Yallop M. (2012) A global diatom database – abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4: 149–165

Le Quere C., Harrison S., Prentice I., Buitenhuis E., Aumonts O., Bopp L., Claustre H., da Cuma C., Geider R., Giraud X., Klass C., Kohfeld K. E., Legendre L., Manizza M., Platt T., Rivkin R. B., Sathyendranath S., Uitz J., Watson A., Wolf-Gladrow D. (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol. 11: 2016–2040

Litchman E., Klausmeier C. A., Miller J. R., Schofield O. M., Falkowski P. G. (2006) Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Bio,geosciences 3: 585–606

Litchman E., Klausmeier C. A. (2008) Trait based community ecol,ogy of phytoplankton. Annu. Rev. Ecol. Evol. S. 39: 615–639

Mariani P., Anderson K. H., Visser A. W., Barton A. D., Kiorbe T. (2013) Control of plankton seasonal succession by adaptive grazing. Limnol. Ocenogr. 58: 173–184

Minter E. J. A., Fenton J., Cooper J., Montagnes D. J. S. (2011) Prey-dependent mortality rate: a critical parameter in microbial models. Microb. Ecol. 62: 155–161

Mitra A. (2005) Predator-prey interactions: Is “ecological stoichi,ometry” sufficient when good food goes bad? J. Plank. Res. 27: 393–399

Mitra A., Davidson K., Flynn K. J. (2003) The influence of changes in predation rates on marine microbial predator/prey interac,tions: a modelling study. Acta Oecologica 24: S359–S367

Mitra A., Flynn K. J. (2010) Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts? J. Mar. Syst. 83: 158–169

Monod J. (1942) Recherches sur la croissance des cultures bacteriennes. Herman, Paris

Montagnes D. J. S., Barbosa A., Boenigk J., Davidson K., Jürgens K., Macek M., Parry J., Roberts E. C., Šimek K. (2008a) Selec,tive feeding behaviour of key free-living protists: Avenues for continued study. Aquat. Micro. Ecol. 53: 83–98

Montagnes D. J. S., Morgan G., Bissinger J. E., Atkinson D., Weisse T. (2008b) Short-term temperature change may impact freshwa,ter carbon flux: a microbial perspective. Global Change Biol. 14: 2823–2838

Montagnes D. J. S., Fenton A. (2012) Prey-abundance affects zoo,plankton assimilation efficiency and the outcome of biogeo,chemical models. Ecol. Model. 243: 1–7

Pahlow M., Oschlies A. (2013) Optimal allocation backs Droop’s cell-quota model. Mar. Ecol. Prog. Ser. 473: 1–5

Palmer J. R., Totterdell I. J. (2001) Production and export in a global ocean ecosystem model. Deep Sea Res. I 48: 1169–1198

Peters F., Gross T. (1994) Increased grazing rates of microplankton in response to small-scale turbulence. Mar. Ecol. Prog. Ser. 115: 299–307

Raine R., McDermott G., Silke J., Lyons K., Nolan G., Cusack C. (2010) A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland. J. Mar. Syst. 83: 150–157

Ross O., Geider R. (2009) New cell-based model of photosynthesis and photo-acclimation: Accumulation and mobilisation of ener,gy reserves in phytoplankton. Mar. Ecol. Prog. Ser. 383: 53–71

Sterner R. W., Elser J. J. (2002) Ecological stoichiometry: The bi,ology of elements from molecules to the biosphere. Princeton University Press, New Jersey

Stock C. A., McGillicuddy D. J., Solow A. R., Anderson D. M. (2005) Evaluating hypotheses for the initiation and develop,ment of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical–biological model. Deep Sea Res. II. 52: 2715–2744

Stoecker D. K. (1998) Conceptual models of mixotrophy in plank,tonic protists and some ecological and evolutionary implica,tions. E. J. Protistol. 34: 281–290

Strom S. L. (1993) Production of phaeopigments by marine pro,tozoa: Results of laboratory experiments analysed by HPLC. Deep Sea Res. I 40: 57–80

Tett P., Portilla E., Gillibrand P. A., Inall M. (2011) Carrying and assimilative capacities: The ACExR-LESV model for sea-loch aquaculture. Aquaculture Res. 42: 51–67

Touzet N., Davidson K., Pete R., Flanagan K., McCoy G. R., Amzil Z., Maher M., Chapelle A., Raine R. (2010) Co-occurrence of the West European (Gr.III) and North American (Gr.I) ribotypes of Alexandrium tamarense (Dinophyceae) in Shetland, Scot,land. Protist 161: 370–84

Vanhoutte-Brunier A., Fernand L., Ménesguen A., Lyons S., Gohin F., Cugier P. (2008) Modelling the Karenia mikimotoi bloom that occurred in the western English Channel during summer 2003. Ecol. Model. 210: 351–376

Ward B. A., Dutkiewicz S., Barton A. D., Follows M. J. (2011) Bio,physical aspects of resource acquisition and competition in al,gal mixotrophs. Am. Nat. 178: 98–112

Ward B. A., Dutkiewicz S., Jahn O., Follows M. J. (2012) A size,structured food-web model for the global ocean. Limnol. Oceanogr. 57: 1877–1891

Yang Z., Lowe C. D., Crowther W., Fenton A., Watts P. C., Mon,tagnes D. J. S. (2012) Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dy-

namics. The ISME journal: doi:10.1038/ismej.2012.117

Information

Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 129 - 138

Article type: Original article

Authors

Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, UK

Published at: 07.02.2014

Article status: Open

Licence: None

Percentage share of authors:

Keith Davidson (Author) - 100%

Article corrections:

-

Publication languages:

English