Allen J. I., Aiken J., Anderson T. R., Buitenhuis E., Cornell S., Geider R. J., Haines K., Hirata T., Holt J., Le Quéré C., Hard,man-Mountford N., Ross O. N., Sinha B., While J. (2010) Ma,rine ecosystem models for earth systems applications: The Mar,QUEST experience. J. Mar. Syst. 81: 19–33 Allen J. I., Polimene L. (2011) Linking physiology to ecology: To,wards a new generation of plankton models. J. Plank. Res. 33: 989–997 Anderson T. R. (2005) Plankton functional type modelling: Run,ning before we can walk? J. Plank. Res. 27: 1073–1081 Anderson T. R. (2010) Progress in marine ecosystem modelling and the “unreasonable effectiveness of mathematics”. J. Mar. Syst. 81: 4–11 Aumont O. (2003) An ecosystem model of the global ocean includ,ing Fe, Si, P colimitations. Global Biogeochem. Cycles 17: 1060 Davidson K. (1996) Modelling microbial food webs. Mar. Ecol. Prog. Ser. 145: 145–296 Davidson K., Flynn K. J., Cunningham A. (1991) Relationships be,tween photopigments, cell carbon, cell nitrogen and growth rate for a marine nanoflagellate. J. Exp. Mar. Biol. Ecol. 153: 87–96 Davidson K., Cunningham A., Flynn K. J. (1993) Modelling tem,poral decoupling between biomass and numbers during the transient nitrogen-limited growth of a marine phytoflagellate. J. Plank. Res. 15: 351–359 Davidson K., Gurney W. S. C. (1999) An investigation of non,steady-state algal growth. II. Mathematical modelling of co,nutrient-limited algal growth. J. Plank. Res. 21: 839–858 Davidson K., Gilpin L. C., Hart M. C., Fouilland E., Mitchell E., Calleja I. A., Laurent C., Miller A. E. J., Leakey R. J. G. (2007). The influence of the balance of inorganic and organic nitro,gen on the trophic dynamics of microbial food webs. Limnol. Oceanogr. 52: 2147–2163 Davidson K., Sayegh F., Montagnes D. J. S. (2011) Oxyrrhis marina based models as a tool to interpret protozoan population dynam,ics. J. Plank. Res. 33: 651–663 Davidson K., Gowen R. J., Tett P., Bresnan E., Harrison P. J., Mckinney A., Milligan S., Mills D. K., Silke J., Crooks A. (2012) Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Est. Coast. Shelf Sci. 115: 399–413 Droop M. R. (1968) Vitamin B-12 and marine ecology. IV. The ki,netics of uptake, growth, and inhibition in Monochrysis lutheri. J. Mar. Biol. Ass. U.K. 48: 689–733 Fasham M. J. R. (1993) Modelling the marine biota. In: The Global Carbon Cycle. NATO ASI series I 15: 457–504 Fasham M. J. R., Ducklow H. W., Mckelvie S. M. (1990) A nitro,gen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48: 591–639 Fenton A., Spencer M., Montagnes D. J. S. (2010) Parameterising variable assimilation efficiency in predator-prey models. Oikos 119: 1000–1010 Flynn K. J. (2001) A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J. Plank. Res. 23: 977–997 Flynn K. J. (2003) Do we need complex mechanistic photoacclima,tion models for phytoplankton? Limnol. Oceanogr. 48: 2243– 2249 Flynn K. J. (2005) Castles built on sand: Dysfunctionality in plank,ton models and the inadequacy of dialogue between biologists and modellers. J. Plank. Res. 27: 1205–1210 Flynn K. J. (2008) The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J. Plank. Res. 30: 423–438 Flynn K. J. (2010) Ecological modelling in a sea of variable stoi,chiometry: Dysfunctionality and the legacy of Redfield and Monod. Prog. Oceanogr. 84: 52–65 Flynn K. J., Davidson K., Cunningham A. (1996) Prey selection and rejection by a microflagellate: Implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol. 196: 357–372 Flynn K. J., Mitra A. (2009) Building the “perfect beast”: Modelling mixotrophic plankton. J. Plank. Res. 31: 965–992 Flynn K. J., Stoecker D. K., Mitra A., Raven J. A., Glibert P. M., Hansen P. J., Granli E., Burkholder J. M. (2012) Misuse of the phytoplankton-zooplankton dichotomy: The need to assign organisms as mixotrophs within plankton functional types. J. Plank. Res. 35: 3–11 Friedrichs M. A. M., Dusenberry J. A., Anderson L. A., Armstrong R. A., Chai F., Christian J. R., Doney S. C., Dunne J., Fujii M., Hood R., McGillicuddy D. J., Moore J. K., Schartau M., Spitz Y. H., Wiggert J. D. (2007) Assessment of skill and portabil,ity in regional marine biogeochemical models: Role of multiple planktonic groups. J. Geophys. Res. 112: C08001 Geider R. J., Maclntyre H. L., Kana T. M. (1998) A dynamic regula,tory model of phytoplanktonic temperature acclimation to light, nutrients, and. Limnol. Oceoangr. 43: 679–694 Geider R. J., La Roche J. (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. E. J. Phycol. 37: 1–17 Hammer A., Grüttner C., Schumann R. (2001) New biocompat,ible tracer particles: Use for estimation of microzooplankton grazing, digestion, and growth rates. Aquat. Micro. Ecol. 24: 153–161 Hofmann E. E. (2010) Plankton functional group models – An as,sessment. Prog. Oceanogr. 84: 16–19 Hood R. R., Laws E. A., Armstrong R. A., Bates N.R., Brown C.W., Carlson C. A., Chai F., Doney S. C., Falkowski P. G., Feely R. A., Friedrichs M. A. M., Landry M. R., Moore J. K., Nelson D. M., Richardson T. L., Salihoglu B., Schartau M., Toole D. A., Wiggert J. D. (2006) Pelagic functional group modeling: Prog,ress, challenges and prospects. Deep Sea Res. II 53: 459–512 Jones H. (1997) A classification of mixotrophic protists based on their behaviour. Freshwater Biol. 37: 35–43 Kimmance S., Atkinson D., Montagnes D. J. S. (2006) Do tempera,ture–food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis ma,rina. Aquat. Microb. Ecol. 42: 63–73 Leblanc K., Arístegui J., Armand L., Assmy P., Beker B., Bode A., Breton E., Cornet V., Gibson J., Gosselin M.-P., Kopczynska E., Marshall H., Peloquin J., Piontkovski S., Poulton A. J., Qué,guiner B., Schiebel R., Shipe R., Stefels J., van Leeuwe M. A., Varela M., Widdicombe C., Yallop M. (2012) A global diatom database – abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 4: 149–165 Le Quere C., Harrison S., Prentice I., Buitenhuis E., Aumonts O., Bopp L., Claustre H., da Cuma C., Geider R., Giraud X., Klass C., Kohfeld K. E., Legendre L., Manizza M., Platt T., Rivkin R. B., Sathyendranath S., Uitz J., Watson A., Wolf-Gladrow D. (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol. 11: 2016–2040 Litchman E., Klausmeier C. A., Miller J. R., Schofield O. M., Falkowski P. G. (2006) Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Bio,geosciences 3: 585–606 Litchman E., Klausmeier C. A. (2008) Trait based community ecol,ogy of phytoplankton. Annu. Rev. Ecol. Evol. S. 39: 615–639 Mariani P., Anderson K. H., Visser A. W., Barton A. D., Kiorbe T. (2013) Control of plankton seasonal succession by adaptive grazing. Limnol. Ocenogr. 58: 173–184 Minter E. J. A., Fenton J., Cooper J., Montagnes D. J. S. (2011) Prey-dependent mortality rate: a critical parameter in microbial models. Microb. Ecol. 62: 155–161 Mitra A. (2005) Predator-prey interactions: Is “ecological stoichi,ometry” sufficient when good food goes bad? J. Plank. Res. 27: 393–399 Mitra A., Davidson K., Flynn K. J. (2003) The influence of changes in predation rates on marine microbial predator/prey interac,tions: a modelling study. Acta Oecologica 24: S359–S367 Mitra A., Flynn K. J. (2010) Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts? J. Mar. Syst. 83: 158–169 Monod J. (1942) Recherches sur la croissance des cultures bacteriennes. Herman, Paris Montagnes D. J. S., Barbosa A., Boenigk J., Davidson K., Jürgens K., Macek M., Parry J., Roberts E. C., Šimek K. (2008a) Selec,tive feeding behaviour of key free-living protists: Avenues for continued study. Aquat. Micro. Ecol. 53: 83–98 Montagnes D. J. S., Morgan G., Bissinger J. E., Atkinson D., Weisse T. (2008b) Short-term temperature change may impact freshwa,ter carbon flux: a microbial perspective. Global Change Biol. 14: 2823–2838 Montagnes D. J. S., Fenton A. (2012) Prey-abundance affects zoo,plankton assimilation efficiency and the outcome of biogeo,chemical models. Ecol. Model. 243: 1–7 Pahlow M., Oschlies A. (2013) Optimal allocation backs Droop’s cell-quota model. Mar. Ecol. Prog. Ser. 473: 1–5 Palmer J. R., Totterdell I. J. (2001) Production and export in a global ocean ecosystem model. Deep Sea Res. I 48: 1169–1198 Peters F., Gross T. (1994) Increased grazing rates of microplankton in response to small-scale turbulence. Mar. Ecol. Prog. Ser. 115: 299–307 Raine R., McDermott G., Silke J., Lyons K., Nolan G., Cusack C. (2010) A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland. J. Mar. Syst. 83: 150–157 Ross O., Geider R. (2009) New cell-based model of photosynthesis and photo-acclimation: Accumulation and mobilisation of ener,gy reserves in phytoplankton. Mar. Ecol. Prog. Ser. 383: 53–71 Sterner R. W., Elser J. J. (2002) Ecological stoichiometry: The bi,ology of elements from molecules to the biosphere. Princeton University Press, New Jersey Stock C. A., McGillicuddy D. J., Solow A. R., Anderson D. M. (2005) Evaluating hypotheses for the initiation and develop,ment of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical–biological model. Deep Sea Res. II. 52: 2715–2744 Stoecker D. K. (1998) Conceptual models of mixotrophy in plank,tonic protists and some ecological and evolutionary implica,tions. E. J. Protistol. 34: 281–290 Strom S. L. (1993) Production of phaeopigments by marine pro,tozoa: Results of laboratory experiments analysed by HPLC. Deep Sea Res. I 40: 57–80 Tett P., Portilla E., Gillibrand P. A., Inall M. (2011) Carrying and assimilative capacities: The ACExR-LESV model for sea-loch aquaculture. Aquaculture Res. 42: 51–67 Touzet N., Davidson K., Pete R., Flanagan K., McCoy G. R., Amzil Z., Maher M., Chapelle A., Raine R. (2010) Co-occurrence of the West European (Gr.III) and North American (Gr.I) ribotypes of Alexandrium tamarense (Dinophyceae) in Shetland, Scot,land. Protist 161: 370–84 Vanhoutte-Brunier A., Fernand L., Ménesguen A., Lyons S., Gohin F., Cugier P. (2008) Modelling the Karenia mikimotoi bloom that occurred in the western English Channel during summer 2003. Ecol. Model. 210: 351–376 Ward B. A., Dutkiewicz S., Barton A. D., Follows M. J. (2011) Bio,physical aspects of resource acquisition and competition in al,gal mixotrophs. Am. Nat. 178: 98–112 Ward B. A., Dutkiewicz S., Jahn O., Follows M. J. (2012) A size,structured food-web model for the global ocean. Limnol. Oceanogr. 57: 1877–1891 Yang Z., Lowe C. D., Crowther W., Fenton A., Watts P. C., Mon,tagnes D. J. S. (2012) Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dy- namics. The ISME journal: doi:10.1038/ismej.2012.117