FAQ
Jagiellonian University logo

Testate Amoebae in Karst Caves of the Dinaric Arc (South-Eastern Europe) with a Description of Centropyxis bipilata sp. nov.

Publication date: 30.12.2019

Acta Protozoologica, 2019, Volume 58, Issue 4, pp. 201 - 215

https://doi.org/10.4467/16890027AP.19.018.12020

Authors

,
Najla Baković
DVOKUT-ECRO Ltd, Trnjanska 37, 10000 Zagreb, Croatia
Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
ADIPA – Society for Research and Conservation of Croatian Natural Diversity, Orehovečki ogranak 37, 10040 Zagreb, Croatia
All publications →
,
Ferry J. Siemensma
Julianaweg 10, 1241VW Kortenhoef, the Netherlands
All publications →
,
Robert Baković
Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia
ADIPA – Society for Research and Conservation of Croatian Natural Diversity, Orehovečki ogranak 37, 10040 Zagreb, Croatia
All publications →
Josip Rubinić
University of Rijeka, Faculty of Civil Engineering, Radmile Matejčić 3, 51000 Rijeka, Croatia
All publications →

Titles

Testate Amoebae in Karst Caves of the Dinaric Arc (South-Eastern Europe) with a Description of Centropyxis bipilata sp. nov.

Abstract

Karst freshwater caves are subterranean habitats characterized by the constant absence of light and relatively small variations of temperature and air humidity. They are mostly food deprived environments, with the exception if large bat colonies are present or if they are intensively supplied with organic matter by sinking rivers. Even though these habitats are often described as harsh, they have enabled the evolution of highly specialized and often endemic animals. The cave eukaryotic micro-organisms, on the other hand, are scarcely researched. The results of research of testate amoebae in the caves of the Dinaric arc detected 23 species, 12 of which were first found in caves. Also, a description of Centropyxis bipilata sp. nov. is presented. This species is clearly distinguished from other described species based on shell size, the presence of two struts and the usually dark ring around the aperture. Testate amoebae were registered on aquatic and terrestrial cave sediments and transitional habitats (like hygropetric and wet walls). The most frequent species within the samples were: Trinema lineare, Cryptodifflugia oviformis and Centropyxis bipilata sp. nov. Maximum diversity of testate amoebae was registered in Ponor Kovači with twenty species. In 24.4 % of the investigated samples  microphototrophs were found, implying good surface-subsurface connectivity that could also affect testate amoebae diversity. This research showed that caves are underestimated habitats that can provide us with new data about the testate amoebae biogeography and diversity.

Zoobank entry

urn:lsid:zoobank.org:pub:14C0B57B-D69D-4A50-8AD3-24587BAF4241

References

Download references

Bakalowicz M. (1975) Géochimie des eaux karstiques et karstification. Ann. Spéléologie 30: 581–589

Bobrov A. A. (2019) Planhoogenraadia liboica sp. nov. a new testate amoebae species from mountain forest soils in China. Protistology 13: 64–66

Bonacci O. (1987) Karst hydrology: with special reference to the Dinaric karst. Springer series in physical environment. Springer. Berlin

Booth R. K., Meyers B. (2010) Environmental controls on pore number in Hyalosphenia papilio: Implications for paleoenvironmental reconstruction. Acta Protozool. 49: 29–35

Chardez D. (1990) Thecamoebiens (Rhizopoda, Testacea) des millieux aniso-oligohydriques mousses et lichens. Acta Protozool. 29(2): 147–152

Chibisova O. I. (1967) Testacea from some caves and karst reservoirs Zool. Zhurnal 44: 181–186 (In Russian).

Coppellotti Krupa O., Guidolin L. (2003) Taxonomy and ecology of ciliate fauna (Protozoa, Ciliophora) from karst caves in North-East Italy. Subterr. Biol. 1: 3–11

Culver D. C., Pipan T. (2009) The biology of caves and other subterranean habitats. The biology of habitats series. Oxford University Press. New York

Culver D. C., Sket B. (2000) Hotspots of Subterranean Biodiversity in Caves and Wells. J. Cave Karst Stud. 62: 11–17

Decloitre L. (1955) Thécamoebiens de la grotte des Singes a Ségéa (Guinée). Speleologica africana. Bull. IFAN, Ser. 1.17.: 989–1099

Delhez F., Chardez D. (1970) Protozoaires des Grottes de Belgique. Ann. Spéléologie 25: 107–137

Engel A. S. (2010) Microbial Diversity of Cave Ecosystems, in: Barton L. L., Mandl M., Loy A. (Eds.), Geomicrobiology: Molecular and Environmental Perspective. Springer Netherlands, Dordrecht: 219–238

Falasco E., Ector L., Isaia M., Wetzel C., Hoffmann L., Bona F. (2014) Diatom flora in subterranean ecosystems: A review. Int. J. Speleol. 43(3): 231–251

Foissner W. (2007) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool. 45: 111–136

Foissner W., Galina A., Korganova A. (1995) Redescription of Three Testate Amoebae (Protozoa, Rhizopoda) from a Caucasian Soil: Centropyxis plagiostoma Bonnet & Thomas, Cyclopyxis kahli (Deflandre) and C. intermedia Kuferath. Arch Protistenkd 146: 13–28

Gittleson S. M., Hoover R. L. (1970) Protozoa of underground waters in caves. Ann. Speleol. 25: 91–106

Gittleson S. M., Hoover R. L. (1969) Cavernicolous protozoa: review of the literature and new studies of Mammoth Cave, Kentucky. Ann. Speleol. 24: 737–776

Golemansky V. G., Bonnet L. (1994) Protozoa. In: Encyclopaedia Biospeologica, (Eds. Juberthie C., Decu V.). Société de Biospéologie, Moulis, 23–33

Harvey R. W., Metge D. W., Shapiro A. M., Renken R. A., Osborn C. L., Ryan J. N., Cunningham K. J., Landkamer L. (2008) Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow. Water Resour. Res. 44–16

Heal O. W. (1963) Morphological variation in certain Testacea (Protozoa: Rhizopoda). Arch. Protistenk. 106: 351–368

Hoogenaard H. R., De Groot A. A. (1940) Zoetwaterrhizopoden en –Heliozoën. Fauna van Nederland. Sijthoff, Leiden

Klimchouk A. (1995) Karst morphogenesis in the epikarstic zone. Cave and karst science 21(2): 45–50

Kołaczyk A., Wiackowski K. (1997) Induced defence in the ciliate Euplotes octocarinatus is reduced when alternative prey are available to the predator. Acta Protozool. 36(1): 57–61

Kosakyan A., Gomaa F., Lara E., Lahr D. J. G. (2016) Current and future perspectives on the systematics, taxonomy and nomenclature of testate amoebae. Eur. J. Protistol. 55, 105–117

Lacković D., Glumac B., Asmerom Y., Stroj A. (2011) Evolution of the Veternica cave (Medvednica Mountain, Croatia) drainage New Testate Amoebae in Karst Caves system: insights from the distribution and dating of cave deposits. Geol. Croat. 64: 213–221

Lara E., Heger T. J., Mitchell E. A. D., Meisterfeld R., Ekelund F. (2007) SS SSU rRNA Reveals a Sequential Increase in Shell Complexity Among the Euglyphid Testate Amoebae (Rhizaria: Euglyphida). Protist 158: 229–237

Lee R. E. (2008) Phycology, Fourth ed. Cambridge University Press. New York

Mayr E. (1969) Principles of Systematic Zoology. McGraw Hill, New York

Martínez A., Asencio A. (2010) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud. 72(1): 11–20

Matjašič J. (1962) Nova jamska Folikulinida (Euciliata, Heterotricha) iz Hercegovine. Biol Vestn 10: 49–53 (In Slovenian with German Abstract)

Mazei Yu. A., Belyakova O., Trulova A., Guidolin L., Coppellotti O. (2012) Testate amoebae communities from caves of some territories in European Russia and North-Eastern Italy. Protistology 7: 42–50

Mazei Yu. A., Tsyganov A. (2006) Freshwater testate amoebae. KMK, Moscow (in Russian) Meisterfeld R. (2000a) Testate amoebae with filopodia – The Illustrated Guide to the Protozoa. Allen Press Inc., Lawrence

Meisterfeld R., (2000b) Arcellinida Kent, 1880 – The Illustrated Guide to the Protozoa. Allen Press Inc., Lawrence

Mihevc A., Prelovšek M., Zupan Hajna N. (2010) Introduction to the Dinaric Karst. Karst Research Institute at ZRC SAZU, Postojna

Mitchell E. A. D., Charman D. J., Warner B. G. (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers. Conserv. 17: 2115–2137

Mulec J. (2018) Phototrophs in Caves: Analysis and Synthesis. In: Cave Ecology, (ed. Moldovan O. T., Kováč Ľ., Halse S.). Springer, Cham, 91–106

Mulec J., Kosi G., Vrhovšek D. (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J. Cave Karst Stud. 70: 3–12

Patterson D. J., Simpson A. G. B., Rogerson A. (2000) The Illustrated Guide to the Protozoa – Amoebae of Uncertain Affinities. Allen Press Inc. Lawrence

Penard E. (1902) Faune Rhizopodique du Bassin de Léman. Kundig, Geneve

Pipan T. (2005) Epikarst – a promising habitat: copepod fauna, its diversity and ecology: a case study from Slovenia (Europe). Karst Research Institute at ZRC SAZU. ZRC Publishing, Postojna-Ljubljana

Pipan T., Culver D. (2007) Epikarst communities: Biodiversity hotspots and potential water tracers. Environ. Geol. 53(2): 265–269

Pipan T., Mulec J., Geric Stare B. (2004) Diversity of culturable bacteria and meiofauna in the epikarst of Škocjanske jame caves (Slovenia). Acta carsologica 33(1): 302–309

Popović S., Subakov Simic G., Stupar M., Unković N., Predojević D., Jovanović J., Grbić M., (2015) Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int. J. Speleol. 44(2): 141–149

Pricop E., Mihai N. (2009) On the adaptations to cave life of some different animal groups (first note), ELBA Bioflux 1(2): 41–48

Riesch R., Plath M., Schlupp I. (2011) Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation. Biol. Lett. 7: 909–912

Rnjak G. 2014. Cave map of Topla peć, Krupa, Golubić, Obrovac (national cave cadastre number 07, 0019)

Romero Jr A., 2009. Cave Biology: Life in Darkness. Cambridge University Press. New York

Schönborn W., Foissner W. and Meisterfeld R. (1983) Licht- und Rasterelektronenmikroskopische Untersuchungen zur Schalenmorphologie und Rassenbildung Bodenbewohnender Testaceen (Protozoa : Rhizopoda) sowie Vorschläge Zur Biometrischen Charakterisierung von Testaceen-Schalen. Protistologica 19(4): 553–566

Siemensma F., Apothéloz-Perret-Gentil L., Holzmann M., Clauss S., Völcker E., Pawlowski J. (2017) Taxonomic revision of freshwater foraminifera with the description of two new agglutinated species and genera. Eur. J. Protistol. 60: 28–44

Simon K., Pipan T., Culver D., 2007. A conceptual model of the flow and distribution of organic carbon in caves. J. Cave Karst Stud. 69(2): 279–284

Smith H. G., Bobrov A., Lara E. (2008) Diversity and biogeography of testate amoebae. Biodivers. Conserv. 17: 329–343

Tolba M. E. M., Huseein E. A. M., Farrag H. M. M., Mohamed H. E. D., Kobayashi S., Suzuki J., Ali T. A. M., Sugano S. (2016) Allovahlkampfia spelaea Causing Keratitis in Humans. PLoS Negl. Trop. Dis. 10: 1–10

Vandel A. (1965) Biospeleology: the biology of cavernicolous animals. Pergamon Press, Oxford

Vincke S., Van de Vijver B., Nijs I., Beyens L. (2006) Changes in the Testacean Community Structure Along Small Soil Profiles. Acta Protozool. 45: 395–406

Vucetich M. C. (1975) Tecamebianos muscicolas y esfagnicolas de islas Malvinas (Argentina). Neotropica 21:11–16

Walochnik J., Mulec J. (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp. nov. Acta Protozool. 48: 25–33

Wanner M. (1994) Effects of light, temperature, fertilizers and pesticides on shell size of the common freshwater and soil species Cyclopyxis kahli (Rhizopoda, Testacealobosia). Limnologica 24: 333–338

White W. B., 1988. Geomorphology and hydrology of karst terrains. Oxford University Press, New York

White W. B., Culver D. C. (Eds.), 2012. Encyclopedia of caves, 2nd ed. ed. Academic Press, Waltham, MA.

Williams P. (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int. J. Speleol. 37: 1–10

Information

Information: Acta Protozoologica, 2019, Volume 58, Issue 4, pp. 201 - 215

Article type: Original article

Authors

DVOKUT-ECRO Ltd, Trnjanska 37, 10000 Zagreb, Croatia

Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia

ADIPA – Society for Research and Conservation of Croatian Natural Diversity, Orehovečki ogranak 37, 10040 Zagreb, Croatia

Julianaweg 10, 1241VW Kortenhoef, the Netherlands

Croatian Biospeleological Society, Demetrova 1, 10000 Zagreb, Croatia

ADIPA – Society for Research and Conservation of Croatian Natural Diversity, Orehovečki ogranak 37, 10040 Zagreb, Croatia

University of Rijeka, Faculty of Civil Engineering, Radmile Matejčić 3, 51000 Rijeka, Croatia

Published at: 30.12.2019

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Najla Baković (Author) - 25%
Ferry J. Siemensma (Author) - 25%
Robert Baković (Author) - 25%
Josip Rubinić (Author) - 25%

Article corrections:

-

Publication languages:

English