FAQ
Jagiellonian University logo

Spirostomum teres: A Long Term Study of an Anoxic-Hypolimnion Population Feeding upon Photosynthesizing Microorganisms

Publication date: 2020

Acta Protozoologica, 2020, Volume 59, Issue 1, pp. 13 - 38

https://doi.org/10.4467/16890027AP.20.002.12158

Authors

,
Miroslav Macek
Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México
Biology Centre, v.v.i., Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
All publications →
,
Ximena Sánchez Medina
Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México
Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México
All publications →
,
Antonio Picazo
Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
All publications →
,
Dana Peštová
All publications →
,
Fernando Bautista Reyes
Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México
Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México
All publications →
,
Jorge Ricardo Montiel Hernández
Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México
All publications →
,
Javier Alcocer
Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México
All publications →
,
Martín Merino Ibarra
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
All publications →
Antonio Camacho
Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
All publications →

Titles

Spirostomum teres: A Long Term Study of an Anoxic-Hypolimnion Population Feeding upon Photosynthesizing Microorganisms

Abstract

The pelagic / anoxic hypolimnion population of Spirostomum teres was investigated as a part of the long-term ciliates’ monitoring (2003–2016) in an oligo- to mesotrophic monomictic hyposaline crater lake Alchichica (Puebla / Veracruz, Mexico), including an analysis of picoplankton (both heterotrophic, HPP and autotrophic, APP) and inorganic compounds of nitrogen (ammonium, nitrite, nitrate), phosphorus (dissolved reactive phosphorus, DRP) and silicon. Additionally, detailed studies of the ciliate vertical distribution and feeding activity measured upon fluorescently labelled APP (picocyanobacteria) were carried out. The results were compared with those from a neighbour freshwater crater lake La Preciosa and with a meromictic karstic lake La Cruz (Cuenca, Spain). The ciliate vertical distribution within the water column was very well defined: During the first decade, the benthic population was frequently found throughout a developing stratification of the lake. The established stratification of the lake turned the conditions favourable for the formation of an oxycline / hypolimnion population, typically, several meters below the deep chlorophyll maximum (formed basically by diatoms); the population preferred the layers without detectable dissolved oxygen. However, an observed gradient of light (PAR) could support both oxygenic and anoxygenic photosynthesis. Late stratification after deepening of the thermocline reduced the layers with S. teres population to a minimum apparently due to the drastic change in physicochemical conditions within a metalimnion, coupled with an oxycline, and limited to 1 to 2 meters; microstratification was found. Last years, the very bottom population disappeared or it was reduced and the late stratification S. teres peaks were smaller or did not appeared. Generally, S. teres oxycline / anoxic hypolimnion population was observed from June through November. Optimum picoplankton numbers in conditions that supported the ciliate growth were found: The ciliate was peaking at APP of 0.6 to 1 × 105 cells mL–1; the optimum of HPP was observed round 1.4 × 106 cells mL–1. S. teres was efficiently feeding upon picocyanobacteria in numbers of 105 cells mL–1 reaching the clearance rate of 2000 nL cell–1h–1, which represented in average 130 to 210 cells cell–1h–1 ingested. Feeding upon purple sulphur bacteria was observed but only during the end of the lake stable stratification when the ciliate population was already dropping. On the other hand, the volume specific clearance of S. teres upon picocyanobacteria (103 h–1) did not support the hypothesis that they could serve as a sole prey. Feeding upon eukaryote phytoplankton (chlorophytes Monoraphidium minutum, diatoms Cyclotella choc tawhatcheeana) could be of higher importance that previously supposed. Additionally, a use of ingested and retained photosynthetic prokaryotes is hypothesized.

References

Download references

Adl S. M., Bass D., Lane C. E., Lukeš J., Schoch C. L., Smirnov A., Agatha S., Berney C., Brown M. W., Burki F., Cárdenas P., Čepička I., Chistyakova L., del Campo J., Dunthorn M., Edvardsen B., Eglit Y., Guillou L., Hampl V., Heiss A. A., Hoppenrath M., James T. Y., Karnkowska A., Karpov S., Kim E., Kolisko M., Kudryavtsev A., Lahr D. J. G., Lara E., Le Gall L., Lynn D. H., Mann D. G., Massana R., Mitchell E. A. D., Morrow C., Park J. S., Pawlowski J. W., Powell M. J., Richter D. J., Rueckert S., Shadwick L., Shimano S., Spiegel F. W., Torruella G., Youssef N., Zlatogursky V., Zhang Q. (2019). Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66: 4–119

Armienta M. A., Vilaclara G., De la Cruz-Reyna S., Ramos S., Ceniceros N., Cruz O., Aguayo A., Arcega-Cabrera F. (2008) Water chemistry of lakes related to active and inactive Mexican volcanoes. J. Volcanol. Geotherm. Res. 178: 249–258

Azam F., Fenchel T., Field J. G., Gray J. S., Meyer-Reil L., Thingstad F. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263

Bark A. W. (1981) The temporal and spatial distribution of planktonic and benthic protozoan communities in a small productive lake. Hydrobiologia 85: 239–255

Bark A. W. (1985) Studies on ciliated protozoa in eutrophic lakes: 1. Seasonal distribution in relation to thermal stratification and hypolimnetic anoxia. Hydrobiologia 124: 167–176

Bautista-Reyes F., Macek M. (2012) Ciliate food vacuole content and bacterial community composition in the warm-monomictic crater lake Alchichica (México). FEMS Microbiol. Ecol. 79: 85–97

Beaver J. R., Crisman T. L. (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–136

Berninger U. G., Finlay B. J., Canter H. M. (1986) The spatial distribution and ecology of zoochlorellae-bearing ciliates in a productive pond. J. Protozool. 33: 557–563

Bick H. (1958) Ökologische Untersuchungen an Ciliaten fallaubreicher Kleingewässer. Arch. Hydrobiol. 54: 506–542

Bishop A. (1923) Some observations upon Spirostomum ambiguum (Ehrenberg). Q. J. Microsc. Sci. 67: 391–432

Borcard D., Gillet F., Legendre P. (2018) Numerical ecology with R. 2nd Ed. Springer, Cham

Boscaro V., Carducci D., Barbieri G., Senra M. V. X., Andreoli I., Erra F., Petroni G., Verni F., Fokin S. I. (2014) Focusing on genera to improve species identification: revised systematics of the ciliate SpirostomumProtist 165: 527–541

Callieri C. (2007) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Rev. 1: 1–28

Callieri C., Coci M., Corno G., Macek M., Modenutti B., Balseiro E., Bertoni R. (2013) Phylogenetic diversity of non-marine picocyanobacteria. FEMS Microbiol. Ecol. 85: 293–301

Camacho A., Miracle M., Romero-Viana L., Picazo Mozo A., Vicente E. (2017) Lake La Cruz, an iron-rich karstic meromictic lake in central Spain. In: Ecology of Meromictic Lakes (Eds. R. D. Gulati, E. S. Zadereev, A. G. Degermendzhi). Ecological Studies (Analysis and Synthesis), vol 228, Springer, Cham,187–233

Dolan J. R., Šimek K. (1997) Processing of ingested matter in Strombidium sulcatum, a marine ciliate (Oligotrichida). Limnol. Oceanogr. 43: 393–397

Dragesco J., Dragesco Kerneis A. (1986) Ciliés libres de l’Afrique intertropicale : introduction à la connaissance et à l’étude des Ciliés. Faune Tropicale 26. ORSTOM, Paris Fenchel T. (1986) Protozoan filter feeding. Progr. Protistol. 1: 65–113

Fenchel T. (2012) Protozoa and oxygen. Acta Protozool. 52: 11–20

Fernandes N. M., da Silva Neto I. D. (2013) Morphology and 18S rDNA gene sequence of Spirostomum minus and Spirostomum teres (Ciliophora: Heterotrichea) from Rio de Janeiro, Brazil. Zoologia 30: 72–79

Filonov A., Tereshchenko I., Alcocer J. (2006) Dynamic response to mountain breeze circulation in Alchichica, a crater lake in Mexico. Geophys. Res. Lett. 33: L07404

Finlay B. J. (1977) The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia 30: 75–81

Finlay B. J. (1981) Oxygen availability and seasonal migrations of ciliated protozoa in a freshwater lake. J. Gen. Microbiol. 123: 173–178

Finlay B. J. (1985) Nitrate respiration by Protozoa (Loxodes spp.) in the hypolimnetic nitrite maximum of a productive freshwater pond. Freshwater Biol. 15: 333–346

Finlay B. J., Esteban G. F. (1998) Planktonic ciliate species diversity as an integral component of ecosystem function in a fresh water pond. Protist 149: 155–165

Finlay B. J., Esteban G. F. (2009) Oxygen sensing drives predictable migrations in a microbial community. Environ. Microbiol. 11: 81–85

Finlay B. J., Maberly S. C., Esteban G. F. (1996) Spectacular abundance of ciliates in anoxic pond water: Contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiol. Ecol. 20: 229–235

Foissner W., Berger H., Kohmann F. (1992) Taxonomische und ökologische revision der Ciliaten des Saprobiensystems – Band II. Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, Wasserwirtschaft, Deggendorf

Fokin S. I., Schweikert M., Brümmer F., Görtz H.-D. (2005) Spirostomum spp. (Ciliophora, Protista), a suitable system for endocytobiosis research. Protoplasma 225: 93–102

Guhl B. E., Finlay B. J., Schink B. (1994) Seasonal development ciliate communities in a eutrophic pond. FEMS Microbiol. Ecol. 14: 293–306

Hadas O., Berman T. (1998) Seasonal abundance and vertical distribution of Protozoa (flagellates, ciliates) and bacteria in Lake Kinneret, Israel. Aquat. Microb. Ecol. 14: 161–170

Hadas O., Pinkas R., Wynne D. (1992) Nitrate reductase activity, ammonium regeneration, and orthophosphate uptake in protozoa isolated from Lake Kinneret, Israel. Microb. Ecol. 23: 107–115

Hansen H. P., Korolef F. (1999) Determination of nutrients. In: Methods of Seawater Analysis (Eds. K. Grasshoff, K. Kremling, M. Ehrhardt). Wiley-VCH Verlag, Weinheim,159–228

Hernández-Avilés J. S., Macek M., Alcocer J., López-Trejo B., Merino-Ibarra M. (2010) Prokaryotic picoplankton dynamics in a warm-monomictic saline lake: temporal and spatial variation in structure and composition. J. Plankton Res. 32: 1301–1314

Hines H. N., Onsbring H., Ettema T. J. G., Esteban G. F. (2018) Molecular investigation of the ciliate Spirostomum semivirescens, with first transcriptome and new geographical records. Protist 169: 875–886

Hu X., Kusuoka Y. (2015) Two oxytrichids from the ancient Lake Biwa, Japan, with notes on morphogenesis of Notohymena australis (Ciliophora, Sporadotrichida). Acta Protozool. 54: 107–122

James M. R., Burns C. W., Forsyth D. J. (1995) Pelagic ciliated protozoa in two monomictic, southern temperate lakes of contrasting trophic state: seasonal distribution and abundance. J. Plankton Res. 17: 1479–1500

Jang S.-W., Kwon C.-B., Shin M.-K. (2012) First records of two Spirostomum ciliates (Heterotrichea: Heterotrichida: Spirostomidae) from Korea. Anim. Syst. Evol. Divers. 28: 29–35

Jørgensen B. B., Kuenen J. G., Cohen Y. (1979) Microbial transformations of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr. 24: 799–822

Laybourn J., Finlay B. J. (1976) Respiratory energy losses related to cell weight and temperature in ciliated protozoa. Oecologia 24: 349–355

Laybourn-Parry J., Olver J., Rees S. (1990) The hypolimnetic protozoan plankton of a eutrophic lake. Hydrobiologia 203: 11–19 López-Ochoterena  E.  (1966)  Ciliados  mesosapróbicos  de Chapultepec (Sistemática, morfología, ecología). Rev. Soc. Mex. Hist. Nat. 26: 115–246

Macek M., Alcocer J., Lugo-Vázquez A., Martínez-Pérez M. E., Peralta-Soriano L., Vilaclara-Fatjó G. (2009) Long term picoplankton dynamics in a warm-monomictic, tropical high altitude lake. J. Limnol. 68: 183–192

Madoni P. (1990) The ciliated protozoa of the monomictic Lake Kinneret (Israel): species composition and distribution during stratification. Hydrobiologia 190: 111–120

Madoni P. (1991) Community structure and distribution of ciliated Protozoa in a freshwater pond covered by Lemna minor. Ital. J. Zool. 58: 273–279

Massana R., Pedrós-Alió C. (1994) Role of anaerobic ciliates in planktonic food webs: abundance, feeding, and impact on bacteria in the field. Appl. Environ. Microbiol. 60: 1325–1334

Modenutti B. E., Balseiro E. G., (2002) Mixotrophic ciliates in an Andean lake: dependence on light and prey of an Ophrydium naumanni population. Freshwater Biol. 47: 121–128

Montagnes D. J. S., Lynn D. H. (1993) A quantitative protargol stain (QPS) for ciliates and other protists. In: Handbook of Methods on Aquatic Microbial Ecology (Eds. P. F. Kemp, B. F. Sherr, E. B. Sherr, J. J. Cole). Lewis Publishers, New York, 229–240

Neidl F. (1989) Die räumliche und zeitliche Verteilung des Ciliaten Spirostomum teres im Benthal und Pelagial des Piburger Sees (Tirol, Österr.) während und nach der Sommerschichtung. Master Thesis, Universität Innsbruck, Austria

Oikonomou A., Filker S., Breiner H. W., Stoeck T. (2015) Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, SW Germany). Environ. Microbiol. 17: 2144–2157

Oikonomou A., Pachiadaki M., Stoeck T. (2014) Protistan grazing in a meromictic freshwater lake with anoxic bottom water. FEMS Microbiol. Ecol. 87: 691–703

Padisák J., Barbosa F., Koschel R., Krienitz L. (2003) Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Arch. Hydrobiol. Spec. Iss. Adv. Limnol. 58: 175–199

Pajares S., Merino-Ibarra M., Macek M., Alcocer J. (2017) Vertical and seasonal distribution of picoplankton and functional nitrogen genes in a high-altitude warm-monomictic tropical lake. Freshwater Biol. 62: 1180–1193

Peštová D., Macek M., Martínez-Pérez M. E. (2008) Ciliates and their picophytoplankton-feeding activity in a high altitude warm-monomictic saline lake. Europ. J. Protistol. 44: 13–25

Porter K. G., Feig Y. S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948

Psenner R., Schlott-Idl K. (1985) Trophic relationships between bacteria and protozoa in the hypolimnion of a meromictic mesotrophic lake. Hydrobiologia 121: 111–120

Rossberg M., Wickham S. A. (2008) Ciliate vertical distribution and diel vertical migration in a eutrophic lake. Fundam. Appl. Limnol. 171/1: 1–14

Sánchez-Medina X., Macek M., Bautista-Reyes F., Perz A., Bonilla-Lemus P., Chávez-Arteaga M. (2016) Inter-annual ciliate distribution variation within the late stratification oxycline in a monomictic lake, Lake Alchichica (Mexico). J. Limnol. 75: 179–190

Sarmento H. (2012) New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia 686: 1–14

Şenler N. G., Yildiz İ. (2004) Faunistic and morphological studies on ciliates (Protozoa, Ciliophora) from a small pond, with responses of ciliate populations to changing environmental conditions. Turk. J. Zool. 28: 245–265

Shazib S. U. A., Vďačný P., Kim J. H., Jang S. W., Shin M. K. (2016) Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Mol. Phylogenet. Evol. 102: 128–144

Shazib S. U. A., Vďačný P., Slovák M., Gentekaki E., Shin M. K. (2019) Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: A case study of the ciliate genus Spirostomum (Ciliophora, Heterotrichea). Sci. Rep. 9: 16360 https://doi.org/10.1038/s41598-019-52722-4 

Sherr E. B., Sherr B. F. (1993). Protistan grazing rates via uptake of fluorescently labeled prey. In: Handbook of Methods on Aquatic Microbial Ecology (Eds. P. F. Kemp, B. F. Sherr, E. B. Sherr, J. J. Cole). Lewis Publishers New York, 695–701

Šimek K., Bobková J., Macek M., Nedoma J. (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077–1090

Skibbe O. (1994) An improved quantitative protargol stain for ciliates and other planktonic protists. Arch. Hydrobiol. 130: 339– 347

Specht H. (1934) Aerobic respiration in Spirostomum ambiguum and the production of ammonia. J. Cell. Comp. Physiol. 5: 319–333

Straškrabová V., Callieri C., Cruz-Pizarro L., Hartman P., Macek M., Nedoma J., Šimek K. (1999) Investigations on microbial food webs in mountain lakes – aims and methods. In: Pelagic Food Web in Mountain Lakes. Mountain Lakes Research Program (Eds. V. Straškrabová, C. Callieri, J. Fott) J. Limnol. 58: 77–87 Tarbe A. L., Unrein F., Stenuite S., Pirlot S., Sarmento H., Sinyinza D., Descy J. P. (2011) Protist herbivory: a key pathway in the pelagic food web of Lake Tanganyika. Microb. Ecol. 62: 314–323

Tirjaková E., Krajčovičová K., Illyová M., Vďačný P. (2016) Interaction of ciliate communities with cyanobacterial water bloom in a shallow, hypertrophic reservoir. Acta Protozool. 55: 173– 188

Yasindi A. W., Taylor W. D. (2016) The Protozoa of soda lakes in East Africa. In: Soda Lakes of East Africa (Ed. M. Schagerl), Springer International Publishing Switzerland, 179–204

Weisse T. (2014) Ciliates and the rare biosphere – Community ecology and population dynamics. J. Euk. Microbiol. 61: 419–433

Information

Information: Acta Protozoologica, 2020, Volume 59, Issue 1, pp. 13 - 38

Article type: Original article

Authors

Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México

Biology Centre, v.v.i., Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic

Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México

Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México

Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain

Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México

Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México

Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México

Grupo de Investigación en Limnología Tropical, Universidad Nacional Autónoma de México, México

Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México

Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain

Published at: 2020

Received at: 02.01.2020

Accepted at: 23.04.2020

Article status: Open

Licence: CC BY-NC-ND  licence icon

Percentage share of authors:

Miroslav Macek (Author) - 11%
Ximena Sánchez Medina (Author) - 11%
Antonio Picazo (Author) - 11%
Dana Peštová (Author) - 11%
Fernando Bautista Reyes (Author) - 11%
Jorge Ricardo Montiel Hernández (Author) - 11%
Javier Alcocer (Author) - 11%
Martín Merino Ibarra (Author) - 11%
Antonio Camacho (Author) - 12%

Article corrections:

-

Publication languages:

English