FAQ
Jagiellonian University logo

Good Reasons and Guidance for Mapping Planktonic Protist Distributions

Publication date: 2014

Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 13 - 27

https://doi.org/10.4467/16890027AP.14.003.1440

Authors

Celia Bulit
Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, México
All publications →

Titles

Good Reasons and Guidance for Mapping Planktonic Protist Distributions

Abstract

Analysing the spatio-temporal distribution of protistan microplankton has faced both conceptual and technical difficulties. However, recognition of a need to study planktonic patchiness, application of a major geology-based methodology (geostatistics) to ecology, and advances in computational technologies have widened the interest in this topic and made it more assessable. This review provides methodological and conceptual guidance on the application of geostatistics to microplankton analysis, using ciliates as example model organisms. Applying geostatistical analysis (and complementary methodologies) to the distribution of ciliate and phytoplankton reveals that attributes of their populations and assemblages (e.g. abundance, biomass, production, diversity) are patchily distributed at multiple spatial-scales in different aquatic environments, and these change over time. Data examined from several environments and scales exhibit distinct patterns of patches regarding their shape, density, and structure; these data can then be used to suggest a behavioural niche-separation of ciliates and the influence of patchiness on the rate processes of food webs. Throughout the review, basic guidance is provided for interpreting where, when, and why planktonic ciliate are so distributed, and directions for work on patchiness is offered, including a guide to the main literature on the topic. This should, therefore, be a useful stepping-stone for researchers interested in the impact of patchiness on protistan ecology, regardless of the environment.

References

Download references
Acosta-Mercado D., Lynn D. H. (2002) A preliminary assessment of spatial patterns of soil ciliate diversity in two subtropical forests in Puerto Rico and its implications for designing an appropriate sampling approach. Soil. Biol. Biochem34: 1517–1520
Armstrong M. (1998) Basic linear geostatistics, Springer–Verlag, Berlin
Atkinson P. M. and Tate N. J. (2000) Spatial scale problems and geo- statistical solutions: A review. Prof. Geogr52(4): 607–623
Bellehumeur C., Legendre P., Marcotte D. (1997) Variance and spa- tial scales in a tropical rain forest: Changing the size of sampling units. Plant Ecol130: 89–98
Benoit-Bird K. J., McManus M. A. (2012) Bottom-up regulation of a pelagic community through spatial aggregations. Biol. Lett. 8: 813–816
Benoit-Bird K. J., Battaile B. C., Heppell S. A., Hoover B., Irons D., Jones N., Kuletz K. J., Nordstrom C. A., Paredes R., Suryan R. M., Waluk C. M. , Trites A. W. (2013) Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. Plos One 8 (1): 1–12
Berryman A., Turchin P. (2001) Identifying the density-dependent structure underlying ecological time series. Oikos 92: 265–270
Bulit C., Díaz-Ávalos C., Signoret M., Montagnes D. J. S. (2003) Spatial structure of planktonic ciliate patches in a tropical coastal lagoon: An application of geostatistical methods. Aquat. Microb. Ecol30: 185–196
Bulit C., Díaz-Ávalos C., Montagnes D. J. S. (2004) Assessing spa- tial and temporal patchiness of the autotrophic ciliate Myrio­ necta rubra: A case study in a coastal lagoon. Mar. Ecol. Prog. Ser268: 55–67
Bulit C., Díaz-Ávalos C. (2009) Patrones de diversidad de ciliados del plancton en la laguna de Chautengo, Guerrero, México. Hi­ drobiologica 19: 109–118
Bulit C., Díaz-Ávalos C., Montagnes D. J. S. (2009) Scaling patterns of plankton diversity: A study of ciliates in a tropical coastal la- goon. Hydrobiologia 624: 29–44
Bulit C., Díaz-Ávalos C., Montagnes D. J. S. (2011) Spatial structure of abundance and diversity of microplanktic ciliates in a coastal lagoon. Interciencia 36: 593–599
Bulit C., Macek M., Montagnes D. J. S. (2013) Insights on short term blooms of planktonic ciliates, provided by an easily recognised genus: CyrtostrombidiumActa Protozool52: 1–12
Chave J. (2013) The problem of pattern and scale in ecology: What have we learned in 20 years? Ecol. Lett16: 4–16
Chilès J.-P., Delfiner P. (1999) Geostatistics: Modeling spatial uncer- tainty. Wiley, New York
Cressie N. (1993) Statistics for spatial data. Wiley, New York
Cressie N., Wikle C. K. (2011) Statistics for spatio-temporal data. John Wiley and Sons
Dalthorp D., Nyrop J., Villani M. G. (2000) Foundations of spatial ecology: The reification of patches through quantitative descrip- tion of patterns and pattern repetition. Entomol. Exp. Appl96: 119–127
Diggle P. (1990) Time series: A biostatistical introduction. Claren- don, Oxford
Diggle P., Tawn J. A., Moyeed R. (1998) Model-based geostatistics. Appl. Statist47: 299–350
Dolan J. R., Stoeck T. (2011) Repeated sampling reveals differen- tial variability in measures of species richness and community composition in planktonic protists. Environ. Microbiol. Reports 3661–666
Ettema C., Wardle D. (2002) Spatial soil ecology. Trends Ecol. Evol. 17177–183
Fenchel T. (1987) Ecology of Protozoa: The biology of free-living phagotrophic protists. Science Tech Publishers, Madison
Ferraro L., Sprovieri M., Alberico I., Lirer F., Prevedello L., Marsel- la E. (2006) Benthic foraminifera and heavy metals distribution: A case study from the Naples Harbour (Tyrrhenian Sea, Southern Italy). Environ. Pollut142: 274–287
Folt C., Schulze P. C., Baumgartner K. (1993) Characterizing a zoo- plankton neighbourhood: Small-scale patterns of association and abundance. Freshwater. Biol30: 289–300
Fortin M.-J. (1999) Effects of sampling unit resolution on the esti- mation of spatial autocorrelation. Ecoscience 6: 636–641
Fortin M-J., Dale M. (2005) Spatial analysis. A guide for ecologists. Cambridge University Press
Franklin R. B., Mills A. L. (2007) Statistical analysis of spatial struc- ture in microbial communities. In: The spatial distribution of microbes in the environment (Eds. R. B. Franklin, A. L. Mills), Springer, Dordrecht, 31–60
Goovaerts P. (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York
Goovaerts P. (1999) Geostatistics in soil science: State-of-the-art and perspectives. Geoderma 89: 1–45
Goovaerts P. (2009) Geostatistical Software. In: Handbook of Ap- plied Spatial Analysis (Eds. M. M. Fischer, A. Getis). Springer, 129–138
Honarkhah M., Caers J. (2010) Stochastic simulation of patterns us- ing distance-based pattern modeling. Math. Geosci42: 487–517
Hutchinson G. E. (1961) The paradox of the plankton. Am. Nat. 95:137–145
Irigoien X., Huisman J., Harris R. P. (2004) Global biodiversity pat- terns of marine phytoplankton and zooplankton. Nature 429: 863–867
Isaaks E. H., Srivastava R. M. (1989) An introduction to applied geo- statistics. Oxford University Press, New York
Kaltenberg A. M., Benoit-Bird K. J. (2013) Intra-patch clustering in mysid swarms revealed through multifrequency acoustics. ICES J. Mar. Sci. doi: 10.1093/icesjms/fst034
Kareiva P. (1990) Population-dynamics in spatially complex envi- ronments – theory and data. Philos. T. Roy. Soc. B 330: 175–190
Keenan S. F., Benfield M. C., Blackburn J. K. (2007) Importance of the artificial light field around offshore petroleum platforms for the associated fish community. Mar. Ecol. Prog. Ser331: 219–231
Kienel U., Kumke T. (2002) Combining ordination techniques and geostatistics to determine the patterns of diatom distributions at Lake Lama, Central Siberia. J. Paleolimnol28: 181–194
Kyriakidis P. C., Journel A. (1999) Geostatistical Space – Time Mod- els: A Review. Math. Geol. 31: 651–684
Legendre P. (1993) Spatial autocorrelation: Trouble or new para- digm? Ecology 74: 1659–1673
Legendre P., Legendre L. (1998) Numerical ecology. Elsevier, Am- sterdam
Leibold M. A., Norberg J. (2004) Biodiversity in metacommunities:
Plankton as complex adaptative systems? Limnol. Oceanogr49: 1278–1289
Leibold M. A., Holyoak M., Mouquet N., Amarasekare P., Chase J. M., Hoopes M. F., Holt R. D., Shurin J. B., Law R., Tilman D., Loreau M., Gonzalez A. (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett7: 601–613
Lepš J., Šmilauer P. (2003) Multivariate analysis of ecological data. University of South Bohemia, České Budějovice
Levin S. A. (1992) The problem of pattern and scale in ecology. Ecology 73: 1943–1967
Levin S. A. (1994) Patchiness in marine and terrestrial systems: From individuals to populations. Philos. T. Roy. Soc. B 343: 99–103
Levin S. A., Paine R. T. (1974) Disturbance, patch formation and community structure. PNAS 71: 2744–2747
Loreau M., Mouquet N., Gonzalez A. (2003) Biodiversity as spatial insurance in heterogeneous landscapes. P. Natl. Acad. Sci. USA 100: 12765–12770
Mackas D., Denman K., Abbott M. (1985) Plankton patchiness: Bi- ology in the physical vernacular. Bull. Mar. Sci37: 652–674
Majaneva S., Berge J., Renaud P. E., Vader A., Stubner E., Rao A. M., Sparre O., Lehtiniemi M. (2013) Aggregations of predators and prey affect predation impact of the arctic ctenophore Mertensia ovum. Mar. Ecol. Prog. Ser. 476: 87–100
Margalef R. (1978) Life-forms of phytoplankton as survival alterna- tives in an unstable environment. Oceanol. Acta 1: 493–509
Marquet P. A., Fortin M-J., Pineda J., Wallin D. O., Clark J., Wu Y., Bollens S., Jacobi C. M., Holt R. D. (1993) Ecological and evolutionary consequences of patchiness: A marine-terrestrial perspective. In: Patch Dynamics, (Eds. S. Levin, T. Powell, J. Steele). Springer, 277–304
Massol F., Gravel D., Mouquet N., Cadotte M. W., Fukami T., Lei- bold M. A. (2011) Linking community and ecosystem dynamics through spatial ecology. Ecol. Letters 14: 313–323
Mehner T., Holker F., Kasprzak P. (2005) Spatial and temporal het- erogeneity of trophic variables in a deep lake as reflected by re- peated singular samplings. Oikos 108: 401–409
Menden-Deuer S., Fredrickson K. (2010) Structure-dependent, pro- tistan grazing and its implication for the formation, maintenance and decline of plankton patches. Mar. Ecol. Prog. Ser420: 57–71
Mitchell E. A. D., Charman D. J., Warner B. G. (2008) Testate amoe- bae analysis in ecological and paleoecological studies of wet- lands: Past, present and future. Biodivers. Conserv. 17: 2115– 2137
Montagnes D. J. S. (1996) Growth responses of planktonic ciliates in the genera Strobilidium and StrombidiumMar. Ecol. Prog. Ser. 130: 241–254
Montagnes D. J. S., Poulton A. J., Shammon T. M. (1999) Mes- oscale, finescale and microscale distribution of micro- and nano- plankton in the Irish sea, with emphasis on ciliates and their prey. Mar. Biol134: 167–179
Montagnes D. J. S., Allen J., Brown L., Bulit C., Davidson R., Díaz- Ávalos C., Fielding S., Heath M., Holliday N. P., Rasmussen J., Sanders R., Waniek J. J., Wilson D. (2008) Factors controlling the abundance and size distribution of the phototrophic ciliate Myrionecta rubra in open waters of the North Atlantic. J. Eu­ karyot. Microbiol. 55: 457–465
Montagnes D. J. S., Allen J., Brown L., Bulit C., Davidson R., Field- ing S., Heath M., Holliday N. P., Rasmussen J., Sanders R., Waniek J. J., Wilson D. (2010a) Role of ciliates and other mi- crozooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411: 101–115
Montagnes D. J. S., Dower J. F., Figueiredo G. M. (2010b) The pro- tozooplankton-ichthyoplankton trophic link: An overlooked as- pect of aquatic food webs. J. Eukaryot. Microbiol57: 223–228
Pierce R. W., Turner J. T. (1992) Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci6: 139–181
Pinel-Alloul B., Ghadouani A. (2007) Spatial heterogeneity of planktonic microorganisms in aquatic systems. In: The spatial distribution of microbes in the environment, (Eds. R. B. Frank- lin, A. L. Mills). Springer, 203–310
Pinel-Alloul B., Niyonsenga T., Legendre P. (1995) Spatial and en- vironmental components of fresh-water zooplankton structure. Ecoscience 2: 1–19
Robertson G. P., Freckman D. W. (1995) The spatial-distribution of nematode trophic groups across a cultivated ecosystem. Ecology 761425–1432
Rossi R. E., Mulla D. J., Journel A. G., Franz E. H. (1992) Geo- statistical tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr62: 277–314
Sedda L., Guerrini L., Bouyer J., Kone N., Rogers D. J. (2010) Spatio-temporal modelling of Glossina palpalis gambiensis and Glossina tachinoides apparent densities in fragmented ecosys- tems of Burkina Faso. Ecography 33: 772–783
Seuront L., Strutton P. G. (Eds.) (2004) Handbook of scaling meth- ods in aquatic ecology: measurement, analysis, simulation. CRC Press, Boca Raton
Seymour J. R., Marcos, Stocker R. (2009) Resource patch formation and exploitation throughout the marine microbial food web. Am. Nat173: E15–E29
Sherr E., Sherr B. (2008) Understanding roles of microbes in marine pelagic food webs: A brief history. In: Microbial Ecology of the Oceans, (Ed. D. L. Kirchman). John Wiley and Sons, 27–44
Wackernagel H. (1998) Multivariate Geostatistics. Springer
Webster R., Oliver M. (2007) Geostatistics for Environmental Scien- tists. John Wiley and Sons, Chichester
Weisse T. (2006) Biodiversity of freshwater microorganisms – Achievements, problems, and perspectives. Pol. J. Ecol. 54: 633–652
Yfantis E., Flatman G. T., Behar J. V. (1987) Efficiency of kriging estimation for square, triangular and hexagonal grids. Math. Geol. 19: 183–205

Information

Information: Acta Protozoologica, 2014, Volume 53, Issue 1, pp. 13 - 27

Article type: Original article

Authors

Departamento El Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, México

Published at: 2014

Article status: Open

Licence: None

Percentage share of authors:

Celia Bulit (Author) - 100%

Article corrections:

-

Publication languages:

English