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Good Reasons and Guidance for Mapping Planktonic Protist Distributions
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Abstract. Analysing the spatio-temporal distribution of protistan microplankton has faced both conceptual and technical difficulties. How-
ever, recognition of a need to study planktonic patchiness, application of a major geology-based methodology (geostatistics) to ecology, and 
advances in computational technologies have widened the interest in this topic and made it more assessable. This review provides method-
ological and conceptual guidance on the application of geostatistics to microplankton analysis, using ciliates as example model organisms. 
Applying geostatistical analysis (and complementary methodologies) to the distribution of ciliate and phytoplankton reveals that attributes 
of their populations and assemblages (e.g. abundance, biomass, production, diversity) are patchily distributed at multiple spatial-scales in 
different aquatic environments, and these change over time. Data examined from several environments and scales exhibit distinct patterns 
of patches regarding their shape, density, and structure; these data can then be used to suggest a behavioural niche-separation of ciliates and 
the influence of patchiness on the rate processes of food webs. Throughout the review, basic guidance is provided for interpreting where, 
when, and why planktonic ciliate are so distributed, and directions for work on patchiness is offered, including a guide to the main literature 
on the topic. This should, therefore, be a useful stepping-stone for researchers interested in the impact of patchiness on protistan ecology, 
regardless of the environment.
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Introduction

Although space is the scenery where ecological 
interactions occur, its explicit incorporation into the 
study of planktonic ecosystems has faced impediments 
related to: the complex nature of fluid environments; 
the necessity for indirect observation of organisms; and 
the lack of appropriate statistical methods and compu-

tational tools. However, there is now a growing number 
of ecological studies where the spatial component is ex-
plicitly recognized and studied using spatial-statistics 
that have been modified for plankton ecology (Franklin 
and Mills 2007, Bulit et al. 2003). Here I review these 
methods and provide direction for their application to 
the study of spatial and temporal heterogeneity (patchi-
ness) of planktonic protists.

As early as in the 70s, Levin (1974, 1994) recog-
nised that patchiness results from the interaction be-
tween physical and biotic processes and occurs at 
literally every scale, in both terrestrial and aquatic envi-
ronments. In this review the word “patchiness” is used 
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to describe the distribution of organisms aggregated in 
space or time, as opposed to random distributed. Im-
plications of such patchy distributions include the rela-
tionships between trophic levels in food webs and pred-
ator-prey interactions (Folt et al. 1993), but also see 
Table 1. For instance, recently, patchiness of food (i.e. 
distribution and density) has been shown to regulate 
predator-prey relationships in marine pelagic environ-
ments and results in bottom up forcing with higher ef-
fect at higher trophic levels (Benoit-Bird and McManus 
2012, Benoit-Bird et al. 2013). Other processes such as 
the exchange of material and organisms across bounda-
ries and the concentration of different resources are also 
mediated by patchiness. Moreover, patchiness provides 
protection, increases mating opportunities, and facili-
tates reproduction and genetic transfer between popula-
tions (Marquet et al. 1993). Clearly, patchiness is a key 
process that requires study in all environments, includ-
ing the pelagic realm.

In fact, spatial and temporal heterogeneity are more 
the rule than the exception for plankton, and recognis-
ing this is fundamental for understanding population 
dynamics and the organization and stability of commu-
nities (Pinel-Alloul et al. 1995, Mehner et al. 2005). 
An issue with such phenomena, however, is that patchy 
data generally do not lend themselves to identification 
by traditional statistical analysis, as data will gener-
ally be neither randomly nor uniformly distributed; this 
leads to problems during statistical analysis, as the as-
sumption of independence between samples is violated. 
As ecologists have become more aware of the impor-
tance of the spatial components of the phenomena they 
study, and as the number of statistical and computa-
tional tools available for quantifying these processes 
has increased, explicit consideration of spatial structure 
in aquatic studies has become more common (Franklin 
and Mills 2007).

Specific to this review, different communities and 
populations of protists, including benthic foraminifera 
and diatoms (Ferraro et al. 2006, Kienel and Kumke 
2002), soil ciliates and amoebae (Acosta-Mercado and 
Lynn 2002, Mitchell et al. 2008), phytoplankton (e.g. 
Montagnes et al. 2010a), and planktonic ciliates (Bulit 
et al. 2003, 2004; Montagnes et al. 1999) are patchy 
in their distributions. Here I review how the patchiness 
of protists can be assessed using geostatistics, an es-
tablished method of spatial statistical analysis. In doing 
so, I indicate how this analysis can be combined with 
other methods, to reveal how ecological processes act 
on spatial patterns. 

The methods I present have been demonstrated to be 
useful in both terrestrial and in aquatic environments for 
microbial and macroscopic organisms (Fortin and Dale 
2005, Franklin and Mills 2007). However, to illustrate 
these applications, and in keeping with this special is-
sue on microplankton, I use planktonic ciliates, as they 
play a key role in pelagic food webs (Pierce and Turner 
1992, Weisse 2006, Sherr and Sherr 2008). Moreover, 
planktonic ciliates have been intensively studied (e.g. 
abundance, biomass, production, diversity) in a range 
of environments and exhibit characteristic spatial pat-
terns that may be used to interpret patterns displayed 
by other protists. Additionally, ciliate populations often 
rapidly fluctuate, in both space and time, with popula-
tions displaying boom-bust events coupled with spatial 
patches; thus they provide a tool to assess temporal and 
spatial variation over short periods. 

In summary, the main goals of this review are to: 
1) draw attention to the potential of geostatistics anal-
ysis for spatio-temporal studies; 2) offer guideline on 
how to proceed with sampling design and analysis of 
data to explore patchiness; 3) illustrate how other sta-
tistical tools can be used in combination with geostatis-
tics to assess the reasons for patchiness and; 4) outline 
problems that can arise and propose future work. 

THE Geostatistical approach

Geostatistics allows us to: assess the spatial struc-
ture of a variable (e.g. abundance, biomass, production, 
diversity); estimate spatial and temporal scales of vari-
ation; map variables for visual interpretation; estimate 
error associated with distributions; and combine the 
above information with other methods, such as multiple 
regression, principal component analysis, and multidi-
mensional scaling, to infer processes associated with 
patchiness.

At a basic level, the method is relatively simple. 
As indicated above, aggregated (or patchy) data are 
by definition neither randomly nor uniformly distrib-
uted; rather, they are autocorrelated, with measured 
variables (e.g. abundance) more similar to each other 
the closer the sampling sites (Legendre and Legendre 
1998, Ettema and Wardle 2002). Geostatistics specifi-
cally takes advantage of this autocorrelation (Legendre 
1993). Originally developed to evaluate the distribution 
of minerals for the mining industry (hence its name), 
geostatistics was first applied to ecological problems in 
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the 1980s and has became the underlying tool of sev-
eral standard mapping programs (e.g. Surfer, SPlus, 
GS+) that are routinely used by plankton ecologists. 
However, like many analytical software packages, such 
tools rarely allow researchers to carefully assess their 
data; by their simplicity they may constrain analysis, 
forcing the user to follow set procedures and possibly 
not obtain the most from hard earned data sets (Table 
1). Developing a fundamental understanding of the un-
derlying principles of geostatistics allows researchers 
to, at the worst, recognise the limitations of standard 
programs and, at best, write code for their own analysis, 
using programs such as R, to tailor the analysis to their 
needs. This may be demonstrated using planktonic pro-
tists as an example. 

Sampling: Requirements and strategies 

To assess patchiness of planktonic protists, a sam-
pling design is needed to: 1) determine the size of 
a patch, which might indicate, for instance, the distri-
bution of resources; 2) quantify the distance between 
patches, as this could indicate the distance that consum-
ers must move to encounter prey; 3) describe the unifor-
mity of patches and the presence of “cores” that might 
suggest their origins; and 4) investigate the spatial orien-
tation of patches, which might indicate their dispersal by 
environmental factors such as currents and winds. The 
geostatistical analysis that assess these attributes uses 
the variance of the studied variable (e.g. abundance) as 
a function of distance between sampling locations; this 
is based on the intuitive assumption that neighbouring 
sample values are more similar to each other than those 
far apart (i.e. they are more autocorrelated and will have 
a small variance). Underlying this phenomenon of spa-
tial autocorrelation are, of course, biological processes, 
such as reproduction, growth, predation, and parasitism 
which impose further shape on the spatial structure; 
however these will be considered later. 

Data for geostatistical analysis can be continuous 
or categorical. The former provide a measurement on 
a continuous scale, and most data used by ecologists 
belong to this type; e.g. characterizing patchiness of 
ciliate biomass or abundance across a defined basin to 
assess food web dynamics (Montagnes et al. 2010a). 
However, to obtain insight into the ecological struc-
ture of ciliate assemblages, it might be appropriate 
to designate them to trophic groups (e.g. autotrophs, 
mixotrophs, heterotrophs, bacterivores, algivores, car-
nivores) or size classes, related to availability to preda-
tors; these data are categorical. Clearly, the resolution 

and the number of categories will influence the ability 
to assess patchiness. Consequently, I would recommend 
that researchers determine taxa to the highest possible 
resolution. Then, patchiness of categorical groupings 
(such as trophic levels) could be assessed based on the 
knowledge of the involved group. By combining both 
approaches through geostatistics this may, in fact, pro-
vide a novel direction in plankton ecology, one that to 
my knowledge has not been explored (Table 1). 

Clearly, samples must be collected over a defined 
region, ideally, but not necessarily, forming a regular 
grid (Fig. 1a); using a sampling scheme with fixed 
separation between observations (systematic sampling) 
generally allows more accurate estimates than random 
sampling, but irregular sampling can be adequately 
analysed. Different geometric forms of sampling grids 
have been proposed and evaluated (Yfantis et al. 1987). 
Sampling in aquatic environments may also include 
three dimensions, as in the case of data collected with 
acoustic echosounders (Kaltenberg and Benoit-Bird 
2013), and specific software to deal with 3D data sets is 
available (Table 1). Furthermore, sampling should, ide-
ally, be designed with a geostatistical analysis in mind, 
but many data sets may lend themselves to analysis, 
even if this was not so. One essential consideration for 
the design of field sampling is the spatial scale for de-
tecting the pattern and its underlying process: the spa-
tial structure that is ultimately identified depends on the 
chosen scale; obviously, it cannot be smaller than the 
smallest distance between samples or larger than the 
extent of the study (Legendre and Legendre 1998). 

It follows then that when possible, a pilot study is 
needed, to determine dimensions of the sampled area, 
variability in different directions, and number of sam-
ples. Some authors (e.g. Webster and Oliver 2007) 
consider that a minimum of 150 data points across 
a landscape is required for a reliable estimation of the 
variogram (the key component of geostatistics, see be-
low), while others support smaller data sets, as often 
occurs in petroleum reservoirs, when data are difficult 
to obtain and interpret (Goovaerts 1999). In fact, if the 
sampling interval (distance between samples) is within 
the range of the spatial pattern, fewer sampling points 
(20–30) may capture the essence of the pattern (Fortin 
and Dale 2005). 

Occasionally, multiple scales of study may be need-
ed to reduce effort but still identify patchiness, as patch-
es may occur at different scales. For instance in a large 
landscape, focused fine-scale sampling would identify 
small patches while coarse-scale sampling would re-
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Fig. 1. A schematic description of establishing a variogram, modelling a function, and producing maps by kriging. Samples (e.g. to de-
termine ciliate abundance) are collected at points of a sampling grid (a). Variance estimates of ciliate abundances at points separated by 
a common distance (lag, h) are calculated using the equation (explanations in the text); this is repeated for each lag (three examples of lags 
are illustrated in a). Each variance estimate is then plotted against its respective lag to produce an empirical variogram (points in b). Then, 
a model is fit to the variogram data (lines in b), and the model is used to predict abundance at unsampled points and to characterize patches. 
The parameters of the variogram models are the nugget, the range, and the sill (see text for their interpretation). Three models are the most 
common: the Gaussian, spherical and exponential (thick, medium, and thin lines, respectively, in b). Models are used to map ciliate abun-
dance by the kriging procedure, with each model producing different predicted distributions (c, d, e): the spherical and exponential produce 
“fuzzier” images than the Gaussian.
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veal larger patches; the fine scale need not be applied 
across the entire landscape. This can be illustrated 
by a study on the distribution of the bloom forming 
mixotrophic ciliate Myrionecta rubra (= Mesodinium 
rubrum) as a case study. This study used a sampling 
scheme of hierarchically nested squared grids (of side 
4, 40, and 200 m, see Fig. 7 in Bulit et al. 2004). In 
doing so, it demonstrated that changes of one order of 
magnitude (20 to 250 cells ml–1) existed in a 16 m2 area, 
and that differences of ~ 3 orders of magnitude (1 to 
700 cells ml–1) were evident in the 40,000 m2 region. 
Patches of a maximum size of 170 m, with abundance 
continuously increasing toward a core located off cen-
tre within the sampling area, were detected only when 
data of the three scales were simultaneously examined, 
by incorporating them in the analysis. 

The size of a sample, the spacing among sampling 
points, and the extent of the area sampled will be re-
stricted by time, effort, and cost. One approach to being 
economical with time and effort is to apply theoretical 
models of spatial variation and previous knowledge of 
the pattern or process of interest to choose an optimal 
sampling scheme. To my knowledge this approach has 
not been applied to planktonic protists, but there is now 
sufficient data available to guide future studies (Bulit 
et al. 2003, 2004, 2009, 2011, 2013; Montagnes et al. 
2008, 2010a), and the reader is directed to Dolan and 
Stoeck (2011) for concepts and directions on how to 
apply these data.

Analyzing data: An introduction to the variogram, 
its modelling and mapping

Geostatistical analysis is based on a very simple 
concept: samples sites that are close together will have 
similar values (e.g. abundance). This can be demon-
strated using the example of the distribution of the 
abundant, small (15 µm) planktonic ciliate Lohmaniel­
la oviformis (from Bulit et al. 2003). For instance, we 
might assume that water samples that are collected 1 m 
apart will have similar numbers of L. oviformis, while 
those 100s meters apart will be more likely to differ. If 
we compare all pairs of samples that are collected at 
a small distance, say 1 m, to one another (distance is 
termed a “lag” in geostatistics) and calculate an “aver-
age” variance for these pairs, the variance should be 
small. In contrast if the lag was large, say 100 m, we 
might obtain a high variance when comparing all the 
pairs of samples. Eventually though, regardless of the 
size of the lag, the variance will not increase further; it 
becomes asymptotic (Fig. 1b). 

How then is this variance calculated? For a single 
lag (e.g. abundance values for all points separated by 
10 m), differences are summed, squared, and divided 
by twice the number of pairs (Eq. 1). This process is re-
peated for each lag, and each of the variance estimates 
is then plotted against the lag to produce an “empirical 
variogram” (points in Fig. 1b). The variance (h) for the 
whole range of distance intervals h is determined as,

�
(1)

where N(h) is the number of observation pairs separated 
by lag h, z(xi) is the value of the variable of interest (e.g. 
abundance) at any one point, and z(xi + h) is its value 
at lag h from z(xi). One modification to the analysis is 
to minimize biases due to “border effects” of the sam-
pling area and the subsequent reduction in the number 
of pairs, by only using lags that are less than half the 
maximum distance of the sampling area; furthermore, 
all points of the variograms should include > 30 data 
pairs (Isaaks and Srivastava 1989). This again aids in 
sampling design (see above).

Once data are analysed by the above method, they 
should ideally follow a pattern similar to that depicted 
in Fig. 1b. Then, the next step is to assess the shape 
of the empirical variogram. To this end a model (func-
tion) is fit to the variogram points (lines in Fig. 1b); 
these models ultimately allow us to predict values at 
unsampled points of the sampling area, to interpolate 
for mapping the distribution (e.g. abundance), and to 
characterize patches. Regardless of the model cho-
sen, features of patches can be indicated by the three 
fundamental and extremely useful parameters of var-
iogram (Fig. 1b): 1) the “range” or distance between 
the smallest sampled spacing and where the data be-
come asymptotic indicates the mean extent or size of 
patches; 2) the “sill” or asymptote provides the total 
variability of the data in the sampling region and, 
3) the “nugget” (a term denoting the geological roots 
of geostatistics) or y-intercept indicates the difference 
in abundance between two samples at an infinitely 
small distance from each other, either due to natural 
variation (e.g. real ciliate patches at a smaller scale 
than the one sampling), experimental error (e.g. dif-
ferent results in replicated counts of ciliates in Uter-
möhl chambers), or both. Then, the variability indi-
cated by the sill is composed by the nugget variability 
and by the structural variability, which is the portion 
explained by the fit model.
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Patches may differ in their characteristic distribu-
tions, and thus there may be different models that need 
to obey certain numerical properties and best fit the data 
of the empirical variogram. Three commonly used mod-
els are the spherical, exponential, and Gaussian func-
tions (Fig. 1b, c, d, e,). The spherical model reaches the 
sill value at the specified range while the exponential 
and Gaussian models approach the sill asymptotically. 
The Gaussian model has a parabolic behaviour at the 
origin appropriate to represent very smoothly varying 
properties. The spherical and exponential models, with 
a linear behaviour at the origin, are adequate for repre-
senting attributes (e.g. abundance) with a higher level 
of short-range variability (Isaaks and Srivastava 1989, 
Goovaerts 1997, Armstrong 1998). Deciding which 
model best fits the data is an issue beyond this review, 
but it can be a combination of visual assessment, sta-
tistical procedures, and ancillary knowledge of the 
researcher; for more detailed guidance see Goovaerts 
(1997). 

The next step is to map the patchiness, by predict-
ing values (e.g. ciliate abundance) between the places 
where they were sampled. Using a process called “krig-
ing” (after D. G. Krige), the selected model is then used 
to interpolate between sampling points to predict and 
to map the distribution (Fig. 1 c, d, e; Goovaerts 1997). 
Based on this analysis, Bulit et al. (2003) quantitatively 
defined a planktonic ciliate patch as the region where 
abundance is above the cut-off of the upper quartile, 
based on kriging predictions. This working concept of 
a patch allows researchers to delimit patches on maps 
and characterize distributions. 

Finally, to complete the procedure, it is useful to 
estimate the confidence in the predicted distributions, 
providing an indication of the precision of boundaries 
and distributions. To this end, error-maps associated 
with kriging predictions can be calculated (for the case 
study of L. oviformis see Fig. 2c). Again, the details of 
this procedure are beyond the scope of this review, and 
the interested reader is directed to Goovaerts (1997). 

Fig. 2. Geostatistical analysis of Lohmaniella oviformis (inset in a) abundance (cells ml–1) produces: a) the variogram, b) the kriging map, 
and c) a map of the coefficient of variation (CV). A spherical model (a, line) is fit to the empirical variogram (a, points); the points account 
for different number of pairs of abundance averaged on a class distance (lag). Only half of the maximum distance was calculated and 
represented to avoid the edge effect, where there are fewer sampling points (see text). The model (a, line) is used to predict abundance at 
unsampled points and to assess characteristics of patches. The model is also used to map patches of L. oviformis abundance (b, grey areas) 
using the kriging interpolator; a patch is operationally defined as abundance in the upper quartile. On the CV map (c), grey areas (with lower 
abundance and closer to edges) have the highest coefficient of variation of the estimated distribution. 
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All the above steps can be done using a range of sta-
tistical packages (see Table 1 for specific indications). 
Readers who plan to pursue this form of analysis are 
strongly encouraged to consult Cressie (1993), Goo-
vaerts (1997), Diggle et al. (1998), Webster and Oliver 
(2007) and Table 1 for a more detailed list of appropri-
ate literature. 

Interpretation of results

Analysis and modelling of the variogram: Using 
the process described in the previous section allows 
the attributes of patches and spatial distribution to be 
characterized, as each component of the variogram will 
reveal distinct features of patches. This may be dem-
onstrated, once again, by using the planktonic ciliate 
L. oviformis from Bulit et al. (2003, Fig. 2) as a case 
study. 

First, the best fit to the empirical variogram (i.e. 
points, Fig. 2a) of L. oviformis data was made by 
a spherical model (i.e. line on Fig. 2a) and a nugget 
effect (i.e. a y-intercept > 0 at an infinitesimally small 
lag). The presence of a nugget indicates that at a dis-
tance below 1 m (the smallest sampled interval) there 
may be further small-scale patches that were not ob-
served, and we may ultimately need to sample at a high-
er resolution, possibly at cm-scale, to understand the 
patchiness of this ciliate. The combination of a spheri-
cal model with a small range and the nugget effect then 
indicates that there are many small patchy areas, with 
high and low abundance across the sampled area (Fig. 
2b). In contrast, if the model that best fit the data had 
been Gaussian, then this would indicate small organ-
ised patches across the sampled landscape, whilst if the 
modelled variogram had been exponential, then this 
would indicate patchiness across the sampled landscape 
was between the first two predictions (Fig. 1c, d, e). 
Knowing that this ciliate consumes small phytoplank-
ton, we might conclude from the predicted patchiness 
of L. oviformis that its prey are equally patchy and that 
it may exhibit rapid, small scale predator-prey dynam-
ics forming small blooms in localised regions (but see 
Temporal variability and periodicity, below). 

As indicated above, the sill (Fig. 1b) is composed 
of two parts: the nugget and structured variability. For 
L. oviformis (Fig. 2a) the nugget accounted for 30% of 
the total variability; this is variability due to “noise” that 
we cannot detect. In contrast the structured variability, 
literally defining the structure of patches (represented 
by the difference between sill and nugget), accounted 
for 70%. A large nugget, as in this case, indicates dif-

fuse patches, while a small one indicates well-struc-
tured, tight patches across a landscape (Dalthorp et al. 
2000). We can then predict that patches of L. oviformis 
are somewhat “fuzzy,” possibly suggesting dispersal 
following a population bloom. From this analysis, we, 
therefore, have now a better understanding of the distri-
bution of L. oviformis, not only in our sampled area but 
across the lagoon. This will allow us to make predic-
tions of how patches may be encountered or may spread 
and how this ciliate may act as a grazer of patches of 
prey and as food for other higher trophic organisms.

For L. oviformis the range (see Fig. 1b) was ~ 10 
m (Fig. 2a), which predicts the mean size of discrete 
patches across the sampled landscape (Fig. 2b). Again, 
we may predict that these small patches arise from rap-
id population growth, as small ciliates can have genera-
tion times of hours in warm waters (Montagnes 1996). 
Moreover, the behaviour of L. oviformis, which is able 
to rapidly swim and reorient itself, might have con-
tributed to accumulation in patches (Bulit et al. 2003). 
Geostatistical analysis thus provides observational lim-
its for these patches at small scale that have generally 
not been proposed, and allows ecologists, with an un-
derstanding of the ciliate’s biology, to infer potential 
causes for patchiness.

Finally, another ecologically important component, 
not outlined in the sections above, that can be obtained 
from the variogram, is a directional component of patch-
es. For example, in aquatic ecosystems winds are likely 
to elongate patches of plankton, and this characteristic 
can be detected by calculating variograms for different 
orientations (see Rossi et al. 1992, Table 1). Analysis 
of L. oviformis, however, indicated that there was no 
directional component (the variogram was “omnidirec-
tional”, Bulit et al. 2003). We can, therefore, conclude 
that although there can be onshore and offshore winds 
in the lagoon, conditions, in this case, were sufficiently 
stable during the sampling to not influence the patch 
direction and shape.

Prediction mapping and associated error: Once 
the variogram has been established, the next step is to 
generate a prediction map (Fig. 2b) and an estimation 
of its error (Fig. 2c). The variogram model is used to 
predict abundance at unsampled locations by ordinary 
“kriging”, a linear prediction method (for details see 
Goovaerts 1997), and then maps of abundance (Fig. 
2b) can be produced to assess the distribution across 
the sampled region; e.g. for L. oviformis (Fig. 2b) the 
patch (as defined above) covers 23% of the total ex-
plored area. 
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However, like any statistical estimates there is error 
associated with prediction of the spatial distribution. 
For the case of L. oviformis, error was mapped as the 
coefficient of variation (CV), to indicate the precision 
of the estimated distribution (Fig. 2c). Here, the CV 
ranged from ~ 15 to 40%; as long as the CV is < 100%, 
we can conclude that outlying or erratic values are rare 
or nonexistent (Isaaks and Srivastava 1989). From this 
analysis we can be reasonably confident of our predic-
tions regarding L. oviformis patchiness.

Issues associated with geostatistical analysis 

Temporal variability and periodicity: Once patch-
iness of abundance has been detected and character-
ized, a further challenge is to assess temporal dynamics 
of patchiness, related to environmental and biological 
forcing. A complementary approach to geostatistical 
analysis is the study of temporal changes in patchiness 
(similar approaches have been applied to the transmis-
sion of trypanosomiasis using space-time covariation, 
Sedda et al. 2010). Such analysis will clearly require 
intensive sampling and effort to simultaneously charac-
terize patchiness in both time and space. An alternate, 
simpler, approach may be to couple discrete measure-
ments of spatial patchiness, as described above, with 
time-series data (Berryman and Turchin 2001), collect-
ed at a fix locality at regular time intervals over a long 
period. As with the spatial-autocorrelation, described 
above for spatial patches, many natural variables oc-
curring over time are correlated; i.e. data that are tem-
porally close together are more similar than those more 
distant. This property can then be employed to study 
population dynamics, periodicity of plankton produc-
tion, and other fluctuating processes.

The use of such time-series data may be illustrated 
by another case study: temporal dynamics of Cyrto­
strombidium sp., an easily recognised planktonic cili-
ate that forms small-scale spatial patches in a coastal 
lagoon (Bulit et al. 2013). Abundance data were col-
lected weekly at a single, representative point for ~ 1 
year. Data were then analysed using an autocorrelation 
function (ACF; Diggle 1990) that describes the cor-
relation of data between successive observations with 
defined time intervals or temporal lags (cf. spatial lags 
for geostatistics, above). ACF was calculated between 
all pairs of Cyrtostrombidium abundance over the 57 
weeks of the study, and then coefficients were plotted 
against time. Visual inspection of these data indicated 
temporal patchiness: positive spikes at lags 2, 3, and 
4 indicate a short-term periodicity of ~ 3 to 4 weeks 
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Fig. 3. A time series of Cyrtostrombidium sp. (inset) abundance dur-
ing ~ 1 year at a fix point in a coastal lagoon. The autocorrelation 
function indicates positive spikes for weeks 2, 3 and 4 suggesting a 
persistence of Cyrtostrombidium bloom for ~ 1 month. Horizontal 
dashed lines indicate the ~ 95% confidence interval for the signifi-
cance of each autocorrelation value.

(Fig. 3). Combined with the geostatistical analysis that 
indicated patches across the lagoon were ~ 30 m in 
size and a Gaussian model best fit the variogram, in-
dicating abundance constantly increased inside patches 
(see Bulit et al. 2013), it was possible to predict that 
these patches represented ~ 1 month-long blooms of 
Cyrtostrombidium. This work then allowed us to make 
predictions regarding the population dynamics of this 
species, including the impact of parasites of the ciliate 
and the role of conjugation by the ciliate, both of which 
were observed during the study. Interpretation of these 
biological phenomena combined with the recognition 
of spatial and temporal patchiness and a knowledge of 
environmental factors (salinity, temperature, etc.) led us 
to speculate that biological factors rather than longer-
term environmental changes drove Cyrtostrombidium 
population dynamics (Bulit et al. 2013).

Interactions of geostatistics with other methods 
for ecological studies: Multiple regression analysis is 
another useful tool that can be combined with geosta-
tistics, as it can be modified to incorporate spatial and 
temporal correlation of data. For instance such methods 
have been used to explain the seasonal variability of cil-
iate diversity (rather than abundance of single species, 
as illustrated above). In this case, the analysis indicated 
that diversity increased due to changes in the physical 
environment, when the local region shifted from fresh-
water to brackish (Bulit et al. 2009).
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More detailed information on the factors that impact 
diversity patches can then be obtained by combining 
geostatistics with principal component analysis (Lepš 
and Šmilauer 2003). In the above case where the dis-
tribution of ciliate diversity was studied (which again 
was in a coastal lagoon), the first principal component 
indicated a hydrodynamic axis with strong influence 
of salinity associated with the influx of marine waters. 
The second principal component indicated that more 
transparent waters of marine origin are associated with 
patches of higher ciliate diversity (see Fig. 3 in Bulit 
and Díaz-Ávalos 2009). In another case study that in-
vestigated the effects of seasons and biogeographical 
regions on the distribution of ciliate abundance in the 
open Atlantic Ocean (Irminger Sea, Montagnes et al. 
2010a), geostatistical analysis was complemented with 
multidimensional scaling (MDS, Honarkhah and Caers 
2010). By computing similarities between patterns of 
diversity at defined distances, this analysis allowed the 
authors to conclude that seasonal differences in ciliate 
taxonomic composition and abundance did not relate 
to previously described hydrographic zones in the re-
gion, supporting the concept of biological forcing of 
patchiness, rather than by large scale oceanographic 
processes.

These examples demonstrate how geostatistics may 
be combined with other techniques to allow further 
analysis, to reveal more detailed information associated 
with ecological principles that may influence the for-
mation of patches (Table 1). Inevitably as microplank-
ton researchers embrace this methodology and recog-
nise its potential, they will be encouraged to expand on 
these and develop a suite of tools to assess temporal and 
spatial heterogeneity in the plankton.

revealing Ecological implications 
of patchiness 

Here I offer several examples of why the analyses 
described above should be relevant to microplankton 
ecologists. In doing so, I also present some new avenues 
for the application of spatial statistics to protist ecology. 
These examples are not exhaustive; rather I hope they 
will stimulate researchers to consider the wider applica-
tions of geostatistics. 
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Fig. 4. A variogram for the ciliate Pleuronema sp. (inset) abundance. 
The best fit to the data (points) provided a pure nugget model; i.e. 
the distribution is random at the measured scale (40 m), with no 
observed patchiness.

Patchiness depends on the organisms

Above, for Lohmaniella oviformis, I illustrated spa-
tial patchiness and argued why it may form patches 
from an ecological perspective, but this is not typical of 
all ciliates. For instance, when studying the distribution 
of a range of several ciliates across a 1,600 m2 area, 
the variogram of abundance of the small bacterivorous 
ciliate Pleuronema sp. indicated a pure nugget effect; 
i.e. the abundance of Pleuronema was randomly dis-
tributed and did not form patches over the scale of 1–40 
m (Fig. 4; Bulit et al. 2003). Likely, given its bacte-
rivorous mode of nutrition (Fenchel 1987), Pleuronema 
will form patches around detrital clumps, on the order 
of microns to millimetres in size. Thus, a substantially 
smaller sampling scheme would be needed to detect 
patches of such bacterivores. This highlights the point 
that to assess the patchiness of protozoa, and ciliates in 
particular, there is a need to understand their biology.

Patchiness of ciliate diversity contributes to ecologi-
cal theory 

There is a substantial body of literature on plankton 
diversity (e.g. Hutchinson 1961, Margalef 1978, Irigoi-
en et al. 2004). However, the spatial structure of plank-
tonic diversity has been less well investigated, although 
its study is a challenge that should contribute to the 
development of ecological theory (Mackas et al. 1985, 
Levin 1992, Leibold and Norberg 2004, Chave 2013). 
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Ciliates may be useful here: by applying geostatistics 
to characterize the spatial distribution of the Shannon 
diversity index of the ciliate assemblages in a model 
system (yet again, a coastal lagoon), Bulit et al. (2009) 
recognised distinct patterns of diversity patchiness at 
scales from 5 m to 3 km and then were able to suggest 
seasonal drivers of the distributions. 

The general issue of patchiness of diversity at an 
ecosystem level may be most apparent in aquatic envi-
ronments, where movement of water accelerates spatial 
heterogeneity promoting a higher diversity of micro-
environments that favour species coexistence (Ettema 
and Wardle 2002). However, geostatistics is not limited 
to aquatic environments and has also been applied to 
diversity of soil ciliates in tropical forests, thereby wid-
ening the ecological scope of this approach (Acosta-
Mercado and Lynn 2002). There is evidently substantial 
opportunity for the continued application of geostatis-
tics to diversity studies of a range of protists.

Scales of patchiness are characteristic of different 
ecosystems and give insight on further ecological as-
pects

This point may be axiomatic, but it bears emphasis-
ing. The study of patchiness at different scales requires 
appropriate sampling designs, aimed at collecting in-
formation at recognised scales of interest (Pinel-Alloul 
and Gadhouani 2007). Following this reasoning, as in-
dicated above, a multiscale approach revealed that for 
the mixotrophic ciliate Myrionecta rubra patches range 
from 10 to 103 m in a coastal lagoon (Fig. 5a, b, c). In 
a further study of M. rubra patches in the open ocean 
(Irminger Sea; Montagnes et al. 2008), it was revealed 
that patches were organized at an oceanic mesoscale, 
on the order of ~ 100 km, with higher abundance in 
spring (Fig. 5d). Furthermore, patchiness of M. rubra 
aided in understanding other aspects such as patchiness 
of cryptophytes (the ciliate’s potential prey and sym-
biont) and the regional dominance by M. rubra, which 
functions as a primary producer and as a heterotroph, 
emphasizing the importance of this species within the 
microbial food web (Montagnes et al. 2008). 

Additionally in a companion study to the one on 
M. rubra, Montagnes et al. (2010a) examined patchi-
ness of abundance, biomass, and production of the to-
tal ciliate assemblage at basin scale of the Irminger 
Sea. This aided in assessing the flow of matter and en-
ergy through the food web and thus the role of micro-
zooplankton in this region. For instance, kriging maps 
revealed the dominance of < 10 µm phytoplankton 

and indicated that patches of phytoplankton biomass 
and total ciliate abundance coincide, suggesting a po-
tential predator-prey relationship (Fig. 6; Montagnes 
et al. 2010a).

Patchiness should be incorporated into food web 
models

Following from the previous section, it should be 
clear that there is a need to incorporate patchiness of 
planktonic ciliates, and other microplankton, into pe-
lagic food web models. Cyrtostrombidium may be con-
sidered here as a simple case-study example, of how 
patchiness may be incorporated into food web models. 
This oligotrich ciliate forms patches that last for 3 to 4 
weeks (Fig. 3) and reaches numbers up to 100 ml–1 (Bu-
lit et al. 2013). In this case, using geostatistical analy-
sis and other ancillary data, we predicted the potential 
grazing impact of this ciliate to be 0.8–5.8% of total 
primary production on average, but up to 18–130% 
when Cyrtostrombidium patches and blooms occurred 
(Bulit et al. 2013). Thus, ciliate patches may act as hot-
spots for trophic transfer, both as consumers of phyto-
plankton and by acting as prey for zooplankton and fish 
larvae (Montagnes et al. 2010b).

Such patchiness could then be incorporated into 
trophic models at different scales using group or spe-
cies-specific patterns rather than assuming populations 
are evenly distributed in space (Kareiva 1990). In this 
direction, researchers have experimentally studied the 
cascade of planktonic patchiness (Seymour et al. 2009) 
and combined experimental and fieldwork to estimate 
aggregations of prey, predators, and consumption rates 
(Menden-Deuer and Fredrickson 2010, Majaneva et 
al. 2013). Finally, recent findings regarding patchiness 
as driver of trophic relationships open new avenues to 
combine different methods (e.g. acoustic measurements 
and geostatistical analysis, Kaltenberg and Benoit-Bird 
2013) to gain insight on these aspects. Once the need 
is recognised, spatial methods of study should be used 
to complement modelling efforts. Thus, I strongly sup-
port the direction of including geostatistical analysis in 
future modelling works, to assess the impact of micro-
zooplankton patchiness. 

Conclusions and PERSPECTIVES 

This work has indicated how geostatistics analysis 
can offer insights into the interpretation and character-
ization of spatial patchiness. Using ciliates as model 
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Fig. 5. Variability of patches of Myrionecta rubra (inset) abundance (cells ml–1) at different scales and in different environments. (a–c) 
patches in a coastal lagoon at: (a) a small sampling area of 40 × 40 m; (b) a larger sampling area of 200 × 200 m; (c) at the lagoonal scale 
(~2 km, length). (d) patches of ~100 km length in the Irminger Sea, North Atlantic.

Fig. 6. Patches of total phytoplankton biomass (ng C ml–1, left) and total ciliate abundance (cells ml–1, right) in the Irminger Sea, North 
Atlantic. The spatial coincidence indicates a potential prey-predator relationship.

65°N
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organisms, it is clear that ecological attributes of their 
populations and assemblages such as abundance, bio-
mass, production, and diversity are patchily distributed 
at multiple scales and in different aquatic environ-
ments. Different populations of ciliates exhibit dis-
tinct patterns of patches regarding shape, density, and 
structure, indicating a behavioural niche-separation of 
protists, and the influence of rate processes on spatial 
distributions. Protists patchiness has been characterized 
both in aquatic and terrestrial environments, indicating 
it is a generalized property of their distribution. More-
over, spatial patchiness has temporal counterparts, rep-
resented by short blooms and their subsequent demise. 
Although spatial patchiness and temporal blooms are 
short-term episodic events, they must be considered in 
trophic models to more accurately calculate transfer of 
matter and energy.

The study of planktonic spatial heterogeneity at 
large scales has also aided in the development of other 
concepts, such as the role of metacommunities (Leibold 
et al. 2004) and metaecosystems (Loreau et al. 2003). 
This conceptual progress in ecological thinking and 
in cross-collaboration among researchers of different 
fields (e.g. ecology, statistics, molecular biology, evo-
lution) has stimulated new questions regarding patterns 
and scales (Massol et al. 2011, Chave 2013) and meth-
ods for their study, with the support of technological 
advances in computational power and other techniques, 
as molecular tools.

Above, I have provided a brief and, hopefully, com-
pelling introduction to geostatistics. I now strongly 
encourage microplankton ecologists to embrace the 
more advanced geostatistical methods, not necessarily 
outlined in this work. As an example, the joint spatial 
variability between organisms, between environmental 
variables, and then between organisms and environmen-
tal variables can be quantified using specific tools (e.g. 
cross-variogram, and factorial kriging analysis; Rossi et 
al. 1992). Also, when dealing with very expensive and/
or time consuming data, multivariate geostatistics anal-
ysis can be applied, using a few available data comple-
mented by more abundant data on a targeted, correlated 
variable that is cheaper and/or easier to obtain (Goo-
vaerts 1997). There is thus a wide range of methods 
available to microplankton ecologists. We should not be 
intimidated by their apparent mathematical complexity. 
My own experience developed through close collabora-
tion with statisticians, and as a parting comment, I high-
ly recommend this interdisciplinary path.
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