FAQ
Jagiellonian University logo

Distribution and Occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae) Populations: An Extensive Field Study

Publication date: 30.12.2020

Acta Protozoologica, 2021, Volume 60, pp. 31 - 36

https://doi.org/10.4467/16890027AP.21.004.14064

Authors

,
Tuğba Sağlam
Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey
All publications →
,
Mustafa Yaman
Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey
All publications →
Ömer Ertürk
Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Turkey
All publications →

Titles

Distribution and Occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae) Populations: An Extensive Field Study

Abstract

The Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae) is one of the most important stored product pests. Fumigation plays a significant role in the management of insect pests in stored-products. However, the use of fumigants is problematic because of their effects on the environment and high costs. Entomopathogenic organisms are environmentally friendly control agents and suppress pest populations under natural conditions. In this study, distribution and occurrence of a microsporidian pathogen, Vairimorpha plodiae (Opisthokonta: Microspora) in the populations of P. interpunctella from 12 localities representing Turkey between 2019 and 2020 are presented for the first time by confirming its effectiveness on natural populations. The presence of the microsporidian pathogen was found in 11 of 12 (91.7%) populations. In total, 863 of 3,044 samples were infected by the pathogen. Infection mean was 28.4% for all populations. Our results showed that V. plodiae infection reached to a considerably high prevalence (88.77%) in P. interpunctella populations and varied from 5.1 to 88.7% between the populations. In addition, microsporidia infections have been identified throughout Turkey. We found that V. plodiae can infect all life stages of P. interpunctella. Totally, 623 (28.5%) of 2187 larvae, 14 (37.8%) of 37 pupae, 226 (27%) of 820 adults were found to be infected by the pathogen. There were considerable differences between the dead and living larvae. The microsporidian infection was found in 26 (11.6%) of 225 living larvae, whereas it was found in 595 (30.5%) of 1,952 dead larvae. These results confirm that the microsporidia pathogen has a high spreading potential in P. interpunctella populations and can be a natural biological suppression factor on pest populations.

References

Download references

Adane K., Moore D., Archer S. A. (1996) Preliminary studies on the use of Beauveria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the laboratory. J. Stored Prod. Res. 32: 105–113

Adarkwah C., Schöller M. (2012) Biological control of Plodia interpunctella (Lepidoptera: Pyralidae) by single and double releases of two larval parasitoids in bulk stored wheat. J. Stored Prod. Res. 51: 1–5

Arıkan T. K., Turan S. L. (2020) Organochlorine pesticide residues in feathers of four bird species from western part of Turkey. Turk J. Zool. 44: 401–407

Batta Y. A. (2016) Recent advances in formulation and application of entomopathogenic fungi for biocontrol of stored grain insects. Biocontrol Sci. Technol. 26: 1171–1183

Boğ E. Ş., Ertürk Ö., Yaman M. (2020) Pathogenicity of aerobic bacteria isolated from honey bees (Apis mellifera) in Ordu province. Turk J. Vet. Anim. Sci. 44: 714–719

Būda V., Pečiulytė D. (2008) Pathogenicity of four fungal species to Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Ekologija 54: 265–270

Gage M.J.G. (1995) Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proc. R. Soc. Lond. B 261: 25–30

Campos M., Phillips T. W. (2010) Contact toxicity of insecticidesfor attract-and-kill applications against adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Manag. Sci. 66: 752–61

Cowan D. K., Vail P. V., Kok-Yokomi M. L., Schreiber F. C. (1986) Formulation of granulosis virüs of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae): efficacy, persistence and influence on oviposition and larval survival. J. Econ. Entomol. 79: 1085–1090

Dales M. J. (1994) Controlling insect pests of stored products using insect growth regulators and insecticides of microbial origin, NRI Bulletin 64, Universıty of Greenwıch. Natural Resorces Institute, ISBN: 0-85954-386-2

Down R. E., Bell H. A., Kirkbride A. E., Edwards J. P. (2004) The pathogenicity of Vairimorpha necatrix (Microspora: Microsporidia) against the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and its potential use for the control of Lepidopteran glass house pests. Pest Manag. Sci. 60: 755–764

Demirözer O., Pekbey G., Hayat R., Herdoğan A., Acanski J., Milicic M., Uzun A. (2020) First contribution on distribution, abundance, and species richness of blowfly species (Diptera) of Isparta Province with five new records for the Turkish fauna. Turk J. Zool. 44: 69–79

Freitas A. C. O., Gigliolli A. A. S., Caleffe R. T. C., Conte H. (2020) Insecticidal effect of diatomaceous earth and dolomite powder against Corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae. Turk J. Zool. 44: 490–497

Hunter D. K., Hoffmann D. F., Collier S. J. (1973) Cross-Infection of a Nuclear Polyhedrosis Virus of the Almond Moth to the Indian Meal Moth. Journal of Invertebrate Pathology 22: 186192

İnal B., Kandemir İ. (2020) DNA barcoding of black cherry aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) populations collected from Prunus avium and Prunus cerasus. Turk J. Zool. 44: 146–155

Kantack B. E., (1959) Laboratory Studies with Bacillus thuringiensis Berliner and Its Possible Use for Control of Plodia interpunctella (Hbn.). J. Econ. Entomol. 52: 1226–1227

Kellen W. R., Lindegren J. E. (1971) Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7: 31–34

Kellen W. R., Lindegren J. E. (1973) Transovarian transmission of Nosema plodiae in the Indian-meal moth, Plodia interpunctella. J. Invertebr. Pathol. 21: 248–254

Kinsinger R. A., McGaughey W. H., (1976) Stability of Bacillus thuringiensis and a Granulosis Virus of Plodia interpunctella on Stored Wheat. J. Econ. Entomol. 69: 149–154

Knell R. J., Begon M. J., Thompson D. (1996) Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. The Royal Society 263: 1366

Kuyulu A., Genç H. (2020) Genetic diversity of codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) populations in Turkey. Turk J. Zool. 44: 462–471

Maddox J. V., Brooks W. M., Fuxa J. R. (1981) Vairimorpha necatrix, a pathogen of agri- cultural pests: potential for pest control. In: Burges H. D. (ed.) Microbial Control of Pests and Plant Diseases, Academic Press. London, pp. 587–594

McGaughey W. H., (1978) Response of Plodia interpunctella and Ephestia cautella Larvae to Spores and Parasporal Crystals of Bacillus thuringiensis. J. Econ. Entomol. 71: 687–688

McGaughey W. H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195

Malone L. A. (1984a) Factors controlling in vitro hatching of Vairimorpha plodiae (Microspora) spores and their infectivity to Plodia interpunctella, Heliothis virescens and Pieris brassicae. J. Invertebr. Pathol. 44: 192–197

Malone L. A. (1984b). A comparison of the development of Vaiimorpha plodiae and Vairimorpha necatrix in the Indian meal moth, Plodia interpunctella. J. Invertebr. Pathol. 43: 140–149

Mbata G. N., Shapıro-Ilan D. I. (2005) Laboratory Evaluation of Virulence of Heterorhabditid Nematodes to Plodia interpunc36 T. Sağlam et al. tella Hübner (Lepidoptera: Pyralidae). Entomological Society of America 34: 676–682

Nwanze K. Z., Partida G. J., McGaughey W. H. (1975) Susceptibility of Cadra cautella and Plodia interpunctella to Bacillus thuringiensis on Wheat. J. Econ. Entomol. 68: 751–752

Oğuzoğlu I., Özer N. (2007) Bioassays of Entomopathogen Nematode Steinernema feltiae All Type (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Tur- H2 (Rhabditida: Heterorhabditidae). Hacettepe Journal of Biology and Chemistry 35: 1

Ramos-Rodríguez O. F., Campbell J. B., Ramaswamy S. (2007) Efficacy of the entomopathogenic nematode Steinernema riobrave against the stored-product insect pests Tribolium castaneum and Plodia interpunctella. Biological Control 40: 15–21

Pereira R. M., Williams D. V., Becnel J. J., Oi H. D. (2002) Yellow- head disease caused by a newly discovered Mattesia sp. in populations of the red imported fire ant, Solenopsis invicta. J. Invertebr. Pathol. 81: 45–48

Rees D. (2004) Insects of Stored Products. Collingwood VIC, Csiro Publishing: Australia

Takov D. I., Ostoich P. V., Tchorbanov A. I., Pilarska D. K. (2020) Order Diptera as a model in the studies of insect immunity: a review. Turk J. Zool. 44: 481–489

Sait S. M., Begon M., Thompson D. J. (1994) Long-term population dynamics of the Indian meal moth Plodia interpunctella and its granulosis virus. Journal of Animal Ecology 63: 861–870

Solter L. F., Becnel J. J., Oi D. H. (2012) Microsporidian entomopathogens. In Insect Pathology, Elsevier Inc., pp. 221–263. DOI: 10.1016/B978-0-12-384984-7.00007-5

Suzaki T., Uwo M. F., Noda H., Takeda M. (2006) A new gregarine parasite of Plodia interpunctella (Insecta: Lepidoptera). Japanese Journal of Protozoology 39: 130–131

Wendell E. B., Dicke R. J. (1964) Detection by Ultraviolet Light of Stored-Product Insects Infected with Mattesia dispora. J. Econ. Entomol. 57: 818–819

Wilson M. E., Consigli R. A. (1985) Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 143: 516–525

Yaman M., Güngör F. P., Güner B. G., Radek R., Linde A. (2016) First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey. Acta Parasitologica 61: 228–231

Yaman M., Algı G., Radek R. (2019) Morphological, ultrastructural and molecular identification of a new microsporidian pathogen isolated from Crepidodera aurata (Coleoptera, Chrysomelidae). Turk J Zool. 43: 407–415

Yaman M. (2020) Transmission of Microsporidium sp. between different generations of Crepidopdera aurata (Coleoptera: Chrysomelidae). Turk J. Zool. 44: 248–253

Information

Information: Acta Protozoologica, 2021, Volume 60, pp. 31 - 36

Article type: Original article

Authors

Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey

Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey

Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Turkey

Published at: 30.12.2020

Received at: 24.06.2021

Article status: Open

Licence: CC BY  licence icon

Percentage share of authors:

Tuğba Sağlam (Author) - 33%
Mustafa Yaman (Author) - 33%
Ömer Ertürk (Author) - 34%

Article corrections:

-

Publication languages:

English