Distribution and Occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae) Populations: An Extensive Field Study
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEDistribution and Occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae) Populations: An Extensive Field Study
Publication date: 30.12.2020
Acta Protozoologica, 2021, Volume 60, pp. 31 - 36
https://doi.org/10.4467/16890027AP.21.004.14064Authors
Distribution and Occurrence of Vairimorpha plodiae (Opisthokonta: Microspora) in the Indian Meal Moth, Plodia interpunctella (Lepidoptera: Pyralidae) Populations: An Extensive Field Study
The Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae) is one of the most important stored product pests. Fumigation plays a significant role in the management of insect pests in stored-products. However, the use of fumigants is problematic because of their effects on the environment and high costs. Entomopathogenic organisms are environmentally friendly control agents and suppress pest populations under natural conditions. In this study, distribution and occurrence of a microsporidian pathogen, Vairimorpha plodiae (Opisthokonta: Microspora) in the populations of P. interpunctella from 12 localities representing Turkey between 2019 and 2020 are presented for the first time by confirming its effectiveness on natural populations. The presence of the microsporidian pathogen was found in 11 of 12 (91.7%) populations. In total, 863 of 3,044 samples were infected by the pathogen. Infection mean was 28.4% for all populations. Our results showed that V. plodiae infection reached to a considerably high prevalence (88.77%) in P. interpunctella populations and varied from 5.1 to 88.7% between the populations. In addition, microsporidia infections have been identified throughout Turkey. We found that V. plodiae can infect all life stages of P. interpunctella. Totally, 623 (28.5%) of 2187 larvae, 14 (37.8%) of 37 pupae, 226 (27%) of 820 adults were found to be infected by the pathogen. There were considerable differences between the dead and living larvae. The microsporidian infection was found in 26 (11.6%) of 225 living larvae, whereas it was found in 595 (30.5%) of 1,952 dead larvae. These results confirm that the microsporidia pathogen has a high spreading potential in P. interpunctella populations and can be a natural biological suppression factor on pest populations.
Adane K., Moore D., Archer S. A. (1996) Preliminary studies on the use of Beauveria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the laboratory. J. Stored Prod. Res. 32: 105–113
Adarkwah C., Schöller M. (2012) Biological control of Plodia interpunctella (Lepidoptera: Pyralidae) by single and double releases of two larval parasitoids in bulk stored wheat. J. Stored Prod. Res. 51: 1–5
Arıkan T. K., Turan S. L. (2020) Organochlorine pesticide residues in feathers of four bird species from western part of Turkey. Turk J. Zool. 44: 401–407
Batta Y. A. (2016) Recent advances in formulation and application of entomopathogenic fungi for biocontrol of stored grain insects. Biocontrol Sci. Technol. 26: 1171–1183
Boğ E. Ş., Ertürk Ö., Yaman M. (2020) Pathogenicity of aerobic bacteria isolated from honey bees (Apis mellifera) in Ordu province. Turk J. Vet. Anim. Sci. 44: 714–719
Būda V., Pečiulytė D. (2008) Pathogenicity of four fungal species to Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Ekologija 54: 265–270
Gage M.J.G. (1995) Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proc. R. Soc. Lond. B 261: 25–30
Campos M., Phillips T. W. (2010) Contact toxicity of insecticidesfor attract-and-kill applications against adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Manag. Sci. 66: 752–61
Cowan D. K., Vail P. V., Kok-Yokomi M. L., Schreiber F. C. (1986) Formulation of granulosis virüs of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae): efficacy, persistence and influence on oviposition and larval survival. J. Econ. Entomol. 79: 1085–1090
Dales M. J. (1994) Controlling insect pests of stored products using insect growth regulators and insecticides of microbial origin, NRI Bulletin 64, Universıty of Greenwıch. Natural Resorces Institute, ISBN: 0-85954-386-2
Down R. E., Bell H. A., Kirkbride A. E., Edwards J. P. (2004) The pathogenicity of Vairimorpha necatrix (Microspora: Microsporidia) against the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and its potential use for the control of Lepidopteran glass house pests. Pest Manag. Sci. 60: 755–764
Demirözer O., Pekbey G., Hayat R., Herdoğan A., Acanski J., Milicic M., Uzun A. (2020) First contribution on distribution, abundance, and species richness of blowfly species (Diptera) of Isparta Province with five new records for the Turkish fauna. Turk J. Zool. 44: 69–79
Freitas A. C. O., Gigliolli A. A. S., Caleffe R. T. C., Conte H. (2020) Insecticidal effect of diatomaceous earth and dolomite powder against Corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae. Turk J. Zool. 44: 490–497
Hunter D. K., Hoffmann D. F., Collier S. J. (1973) Cross-Infection of a Nuclear Polyhedrosis Virus of the Almond Moth to the Indian Meal Moth. Journal of Invertebrate Pathology 22: 186192
İnal B., Kandemir İ. (2020) DNA barcoding of black cherry aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) populations collected from Prunus avium and Prunus cerasus. Turk J. Zool. 44: 146–155
Kantack B. E., (1959) Laboratory Studies with Bacillus thuringiensis Berliner and Its Possible Use for Control of Plodia interpunctella (Hbn.). J. Econ. Entomol. 52: 1226–1227
Kellen W. R., Lindegren J. E. (1971) Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7: 31–34
Kellen W. R., Lindegren J. E. (1973) Transovarian transmission of Nosema plodiae in the Indian-meal moth, Plodia interpunctella. J. Invertebr. Pathol. 21: 248–254
Kinsinger R. A., McGaughey W. H., (1976) Stability of Bacillus thuringiensis and a Granulosis Virus of Plodia interpunctella on Stored Wheat. J. Econ. Entomol. 69: 149–154
Knell R. J., Begon M. J., Thompson D. (1996) Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. The Royal Society 263: 1366
Kuyulu A., Genç H. (2020) Genetic diversity of codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) populations in Turkey. Turk J. Zool. 44: 462–471
Maddox J. V., Brooks W. M., Fuxa J. R. (1981) Vairimorpha necatrix, a pathogen of agri- cultural pests: potential for pest control. In: Burges H. D. (ed.) Microbial Control of Pests and Plant Diseases, Academic Press. London, pp. 587–594
McGaughey W. H., (1978) Response of Plodia interpunctella and Ephestia cautella Larvae to Spores and Parasporal Crystals of Bacillus thuringiensis. J. Econ. Entomol. 71: 687–688
McGaughey W. H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195
Malone L. A. (1984a) Factors controlling in vitro hatching of Vairimorpha plodiae (Microspora) spores and their infectivity to Plodia interpunctella, Heliothis virescens and Pieris brassicae. J. Invertebr. Pathol. 44: 192–197
Malone L. A. (1984b). A comparison of the development of Vaiimorpha plodiae and Vairimorpha necatrix in the Indian meal moth, Plodia interpunctella. J. Invertebr. Pathol. 43: 140–149
Mbata G. N., Shapıro-Ilan D. I. (2005) Laboratory Evaluation of Virulence of Heterorhabditid Nematodes to Plodia interpunc36 T. Sağlam et al. tella Hübner (Lepidoptera: Pyralidae). Entomological Society of America 34: 676–682
Nwanze K. Z., Partida G. J., McGaughey W. H. (1975) Susceptibility of Cadra cautella and Plodia interpunctella to Bacillus thuringiensis on Wheat. J. Econ. Entomol. 68: 751–752
Oğuzoğlu I., Özer N. (2007) Bioassays of Entomopathogen Nematode Steinernema feltiae All Type (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Tur- H2 (Rhabditida: Heterorhabditidae). Hacettepe Journal of Biology and Chemistry 35: 1
Ramos-Rodríguez O. F., Campbell J. B., Ramaswamy S. (2007) Efficacy of the entomopathogenic nematode Steinernema riobrave against the stored-product insect pests Tribolium castaneum and Plodia interpunctella. Biological Control 40: 15–21
Pereira R. M., Williams D. V., Becnel J. J., Oi H. D. (2002) Yellow- head disease caused by a newly discovered Mattesia sp. in populations of the red imported fire ant, Solenopsis invicta. J. Invertebr. Pathol. 81: 45–48
Rees D. (2004) Insects of Stored Products. Collingwood VIC, Csiro Publishing: Australia
Takov D. I., Ostoich P. V., Tchorbanov A. I., Pilarska D. K. (2020) Order Diptera as a model in the studies of insect immunity: a review. Turk J. Zool. 44: 481–489
Sait S. M., Begon M., Thompson D. J. (1994) Long-term population dynamics of the Indian meal moth Plodia interpunctella and its granulosis virus. Journal of Animal Ecology 63: 861–870
Solter L. F., Becnel J. J., Oi D. H. (2012) Microsporidian entomopathogens. In Insect Pathology, Elsevier Inc., pp. 221–263. DOI: 10.1016/B978-0-12-384984-7.00007-5
Suzaki T., Uwo M. F., Noda H., Takeda M. (2006) A new gregarine parasite of Plodia interpunctella (Insecta: Lepidoptera). Japanese Journal of Protozoology 39: 130–131
Wendell E. B., Dicke R. J. (1964) Detection by Ultraviolet Light of Stored-Product Insects Infected with Mattesia dispora. J. Econ. Entomol. 57: 818–819
Wilson M. E., Consigli R. A. (1985) Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 143: 516–525
Yaman M., Güngör F. P., Güner B. G., Radek R., Linde A. (2016) First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey. Acta Parasitologica 61: 228–231
Yaman M., Algı G., Radek R. (2019) Morphological, ultrastructural and molecular identification of a new microsporidian pathogen isolated from Crepidodera aurata (Coleoptera, Chrysomelidae). Turk J Zool. 43: 407–415
Yaman M. (2020) Transmission of Microsporidium sp. between different generations of Crepidopdera aurata (Coleoptera: Chrysomelidae). Turk J. Zool. 44: 248–253
Information: Acta Protozoologica, 2021, Volume 60, pp. 31 - 36
Article type: Original article
Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey
Department of Biology, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, Turkey
Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu University, Turkey
Published at: 30.12.2020
Received at: 24.06.2021
Article status: Open
Licence: CC BY
Percentage share of authors:
Article corrections:
-Publication languages:
English