Adane K., Moore D., Archer S. A. (1996) Preliminary studies on the use of Beauveria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the laboratory. J. Stored Prod. Res. 32: 105–113 Adarkwah C., Schöller M. (2012) Biological control of Plodia interpunctella (Lepidoptera: Pyralidae) by single and double releases of two larval parasitoids in bulk stored wheat. J. Stored Prod. Res. 51: 1–5 Arıkan T. K., Turan S. L. (2020) Organochlorine pesticide residues in feathers of four bird species from western part of Turkey. Turk J. Zool. 44: 401–407 Batta Y. A. (2016) Recent advances in formulation and application of entomopathogenic fungi for biocontrol of stored grain insects. Biocontrol Sci. Technol. 26: 1171–1183 Boğ E. Ş., Ertürk Ö., Yaman M. (2020) Pathogenicity of aerobic bacteria isolated from honey bees (Apis mellifera) in Ordu province. Turk J. Vet. Anim. Sci. 44: 714–719 Būda V., Pečiulytė D. (2008) Pathogenicity of four fungal species to Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Ekologija 54: 265–270 Gage M.J.G. (1995) Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proc. R. Soc. Lond. B 261: 25–30 Campos M., Phillips T. W. (2010) Contact toxicity of insecticidesfor attract-and-kill applications against adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Pest Manag. Sci. 66: 752–61 Cowan D. K., Vail P. V., Kok-Yokomi M. L., Schreiber F. C. (1986) Formulation of granulosis virüs of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae): efficacy, persistence and influence on oviposition and larval survival. J. Econ. Entomol. 79: 1085–1090 Dales M. J. (1994) Controlling insect pests of stored products using insect growth regulators and insecticides of microbial origin, NRI Bulletin 64, Universıty of Greenwıch. Natural Resorces Institute, ISBN: 0-85954-386-2 Down R. E., Bell H. A., Kirkbride A. E., Edwards J. P. (2004) The pathogenicity of Vairimorpha necatrix (Microspora: Microsporidia) against the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and its potential use for the control of Lepidopteran glass house pests. Pest Manag. Sci. 60: 755–764 Demirözer O., Pekbey G., Hayat R., Herdoğan A., Acanski J., Milicic M., Uzun A. (2020) First contribution on distribution, abundance, and species richness of blowfly species (Diptera) of Isparta Province with five new records for the Turkish fauna. Turk J. Zool. 44: 69–79 Freitas A. C. O., Gigliolli A. A. S., Caleffe R. T. C., Conte H. (2020) Insecticidal effect of diatomaceous earth and dolomite powder against Corn weevil Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae. Turk J. Zool. 44: 490–497 Hunter D. K., Hoffmann D. F., Collier S. J. (1973) Cross-Infection of a Nuclear Polyhedrosis Virus of the Almond Moth to the Indian Meal Moth. Journal of Invertebrate Pathology 22: 186192 İnal B., Kandemir İ. (2020) DNA barcoding of black cherry aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) populations collected from Prunus avium and Prunus cerasus. Turk J. Zool. 44: 146–155 Kantack B. E., (1959) Laboratory Studies with Bacillus thuringiensis Berliner and Its Possible Use for Control of Plodia interpunctella (Hbn.). J. Econ. Entomol. 52: 1226–1227 Kellen W. R., Lindegren J. E. (1971) Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7: 31–34 Kellen W. R., Lindegren J. E. (1973) Transovarian transmission of Nosema plodiae in the Indian-meal moth, Plodia interpunctella. J. Invertebr. Pathol. 21: 248–254 Kinsinger R. A., McGaughey W. H., (1976) Stability of Bacillus thuringiensis and a Granulosis Virus of Plodia interpunctella on Stored Wheat. J. Econ. Entomol. 69: 149–154 Knell R. J., Begon M. J., Thompson D. (1996) Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. The Royal Society 263: 1366 Kuyulu A., Genç H. (2020) Genetic diversity of codling moth Cydia pomonella L. (Lepidoptera: Tortricidae) populations in Turkey. Turk J. Zool. 44: 462–471 Maddox J. V., Brooks W. M., Fuxa J. R. (1981) Vairimorpha necatrix, a pathogen of agri- cultural pests: potential for pest control. In: Burges H. D. (ed.) Microbial Control of Pests and Plant Diseases, Academic Press. London, pp. 587–594 McGaughey W. H., (1978) Response of Plodia interpunctella and Ephestia cautella Larvae to Spores and Parasporal Crystals of Bacillus thuringiensis. J. Econ. Entomol. 71: 687–688 McGaughey W. H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195 Malone L. A. (1984a) Factors controlling in vitro hatching of Vairimorpha plodiae (Microspora) spores and their infectivity to Plodia interpunctella, Heliothis virescens and Pieris brassicae. J. Invertebr. Pathol. 44: 192–197 Malone L. A. (1984b). A comparison of the development of Vaiimorpha plodiae and Vairimorpha necatrix in the Indian meal moth, Plodia interpunctella. J. Invertebr. Pathol. 43: 140–149 Mbata G. N., Shapıro-Ilan D. I. (2005) Laboratory Evaluation of Virulence of Heterorhabditid Nematodes to Plodia interpunc36 T. Sağlam et al. tella Hübner (Lepidoptera: Pyralidae). Entomological Society of America 34: 676–682 Nwanze K. Z., Partida G. J., McGaughey W. H. (1975) Susceptibility of Cadra cautella and Plodia interpunctella to Bacillus thuringiensis on Wheat. J. Econ. Entomol. 68: 751–752 Oğuzoğlu I., Özer N. (2007) Bioassays of Entomopathogen Nematode Steinernema feltiae All Type (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Tur- H2 (Rhabditida: Heterorhabditidae). Hacettepe Journal of Biology and Chemistry 35: 1 Ramos-Rodríguez O. F., Campbell J. B., Ramaswamy S. (2007) Efficacy of the entomopathogenic nematode Steinernema riobrave against the stored-product insect pests Tribolium castaneum and Plodia interpunctella. Biological Control 40: 15–21 Pereira R. M., Williams D. V., Becnel J. J., Oi H. D. (2002) Yellow- head disease caused by a newly discovered Mattesia sp. in populations of the red imported fire ant, Solenopsis invicta. J. Invertebr. Pathol. 81: 45–48 Rees D. (2004) Insects of Stored Products. Collingwood VIC, Csiro Publishing: Australia Takov D. I., Ostoich P. V., Tchorbanov A. I., Pilarska D. K. (2020) Order Diptera as a model in the studies of insect immunity: a review. Turk J. Zool. 44: 481–489 Sait S. M., Begon M., Thompson D. J. (1994) Long-term population dynamics of the Indian meal moth Plodia interpunctella and its granulosis virus. Journal of Animal Ecology 63: 861–870 Solter L. F., Becnel J. J., Oi D. H. (2012) Microsporidian entomopathogens. In Insect Pathology, Elsevier Inc., pp. 221–263. DOI: 10.1016/B978-0-12-384984-7.00007-5 Suzaki T., Uwo M. F., Noda H., Takeda M. (2006) A new gregarine parasite of Plodia interpunctella (Insecta: Lepidoptera). Japanese Journal of Protozoology 39: 130–131 Wendell E. B., Dicke R. J. (1964) Detection by Ultraviolet Light of Stored-Product Insects Infected with Mattesia dispora. J. Econ. Entomol. 57: 818–819 Wilson M. E., Consigli R. A. (1985) Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 143: 516–525 Yaman M., Güngör F. P., Güner B. G., Radek R., Linde A. (2016) First report and spore ultrastructure of Vairimorpha plodiae (Opisthokonta: Microspora) from Plodia interpunctella (Lepidoptera: Pyralidae) in Turkey. Acta Parasitologica 61: 228–231 Yaman M., Algı G., Radek R. (2019) Morphological, ultrastructural and molecular identification of a new microsporidian pathogen isolated from Crepidodera aurata (Coleoptera, Chrysomelidae). Turk J Zool. 43: 407–415 Yaman M. (2020) Transmission of Microsporidium sp. between different generations of Crepidopdera aurata (Coleoptera: Chrysomelidae). Turk J. Zool. 44: 248–253