FAQ
Jagiellonian University logo

Abundances of Naked Amoebae and Macroflagellates in Central New York Lakes: Possible Effects by Zebra Mussels

Publication date: 15.05.2011

Acta Protozoologica, 2011, Volume 50, Issue 1, pp. 23 - 31

https://doi.org/10.4467/16890027AP.11.003.0003

Authors

,
Paul J. Bischoff
The State University of New York, College at Oneonta, Oneonta, New York, USA
All publications →
Thomas G. Horvath
The State University of New York, College at Oneonta, Oneonta, New York, USA
All publications →

Titles

Abundances of Naked Amoebae and Macroflagellates in Central New York Lakes: Possible Effects by Zebra Mussels

Abstract

Zebra mussels (Dreissena polymorpha) are bivalve mollusks that have invaded and altered the ecology of many North American lakes and rivers. To identify possible ecological effects of zebra mussels on naked amoebae, this study compared abundances of sediment and water column naked amoebae in shallow water zones of four lakes with and four lakes without zebra mussels. Additional data was collected on the density of macroflagellates. Although no statistically significant difference in naked amoebae density was found, higher ratios of sediment to water column naked amoebae abundances in zebra mussel lakes were observed due to increased naked amoebae abundances in the sediments. However, we did not observe a concomitant decrease in water column naked amoebae abundances. Flagellate abundances revealed no significant differences between the two lake types. Taken together, the data show that naked amoebae and flagellates thrive in shallow water zones of zebra mussel lakes and that the filter feeding activities of zebra mussels and reported reduced water column protists abundances may be offset by the flocculation of protists from the rich zebra mussel colonies.

References

Download references

Adl M. S., Gupta V. V. S. R. (2006) Protists in soil ecology and forest nutrient cycling. Can. J. Forest Res36: 1805–1817

Anderson O. R. (1994) Fine structure of the marine amoebae Vexillifera telmathalassa collected from a coastal site near Barbados with a description of salinity tolerance, feeding behavior and prey. J. Eukaryot. Microbiol41: 124–128

Anderson O. R., Rogerson A. (1995) Annual abundances and growth potential of gymnamoebae in the Hudson estuary with comparative data from the Firth of Clyde. Eur. J. Protistol, 31: 223–233

Azam F., Fenchel T., Field J. G., Gray J. S., Meyer-Reil L. A., Thingstad F. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263

Bass P., Bischoff P. J. (2001) Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in Southeastern USA. J. Eukaryot. Microbiol. 48: 475–479

Bischoff P. J. (2002) An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in Southeastern USA. Acta Protozool41: 183–189

Bischoff P. J., Wetmore S. (2009) Seasonal abundances of naked amoebae in biofilms on shell of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J. Eukaryot. Microbiol56: 397–399

Boenigk, J., Arndt H. (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Atonie van Leeuwenhoek. 81: 465–480

Butler H., Rogerson A. (1995) Temporal and spatial abundance of naked ameobae (Gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 46: 724–730

Caraco N. F., Cole J. J., Raymond P. A., Strayer D. L., Pace M. L., Findlay S. E., Fischer D. T. (1997) Zebra mussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecology 78: 588–602

Clairholm M. (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem17: 181–188

Coleman D. C. (1994) The microbial loop concept as used in terrestrial soil ecology studies. Microb. Ecol28: 245–250

Darbyshire J. F. (2005) The use of soil biofilms for observing protozoan movement and feeding. FEMS Microbiol. Letters 244: 329–333

Elliott P., Aldridge D. C., Moggridge G. D. (2008) Zebra mussel filtration and its potential uses in industrial water treatment. Water Resources 42: 1664–1674

Fenchel T. (1982) Ecology of heterotrophic microflagellates: IV. Quantitative occurrences and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42

Findlay S., Pace M. L., Fischer D. T. (1998) Response of heterotrophic planktonic bacteria to the zebra mussel invasion of the tidal freshwater Hudson River. Microb. Ecol36: 131–40

Hebert, P. D. N., Muncaster B. W., Mackie D. L. (1988) Ecological and genetic studies on Dreissena polymorpha (Pallas): A new mollusc in the Great Lakes. Can. J. Fish. Aquat. Sci. 46: 1587–1591

Horgan M. J., Mills E. L. (1997) Clearance rates and filtering activity of zebra mussel (Dreissena polymorpha): implications for freshwater lakes Can. J. Fish. Aquat. Sci. 54: 249–255

Horvath T. G. (2008) Economically viable strategy for prevention of invasive species introduction: Case study of Otsego Lake, New York. Aquatic Invasions 3: 3–9

Huws S. A., McBain A. J., Gilbert P. (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Applied Microbiol98: 238–244

Jahnke J., Wehren T., Priefer U. B. (2007) In vitro studies of the impact of the naked soil amoebae Thecamoebae similis Greef, feeding on phototrophic soil biofilms. Eur. J. Soil Biol. 43: 14–22

Kiss A. K., Ács E., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121–138

Lavrentyev P. J., Gardner W. S., Cavaletto J. F., Beaver J. R. (1995) Effects of zebra mussel (Dreissena polymorpha Pallas) on protozoa and phytoplankton from Saginaw Bay, Lake Huron. J. Great Lakes Res. 21: 545–555

Leach J. H. (1993) Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning reefs in western Lake Erie. In: Zebra Mussels. Biology, Impacts, and Control, (Eds. T. F. Nalepa, D. W. Schloesser). Lewis Publishers, Ann Arbor, Michigan, 381–397

Page F. C. (1988) A New Key to Freshwater and Soil Gymnamoebae. Freshwater Biological Association, Cumbria, UK

Page F. C. (1983) Marine Gymnamoebae. Institute of Terrestrial Ecology, Cambridge, England

Roditi H. A., Strayer D. L., Findlay S. E. G. (1997) Characteristics of zebra mussel (Dreissena polymorpha) biodeposits in a tidal freshwater estuary. Arch. Hydrobiol. 140: 207–219

Rogerson A., Anderson O. R., Vogel C. (2003) Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res25: 1359–1365

Rogerson A., Gwaltney C. (2000). High numbers of naked amoebae in the planktonic waters of a mangrove stand in southern Florida, USA. J. Eukaryot. Microbiol47: 235–241

Smirnov A. V. & Brown S. (2004). Guide to the methods of study and identification of soil gymnamoebae. Protistol. 3: 148–190

Smirnov A., Thar R. (2003) Spatial distribution of gymnamoebae (rhizopoda, lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist 154: 359–369

Stewart T. W., Miner J. C., Lowe R. L. (1998) Quantifiying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter productin and shell generated habitat. J. N. A. Benthol Soc17: 81–94

Vanderploeg H. A., Liebig J. R., Carmichael W. W., Agy M. A., Johengen T. H., Fahnenstiel G. L., Nalepa, T. F. (2001) Zebra mussel (Dreissena polymorpha) selective sfiltration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci. 58: 1208–1221

Weitere M., Bergfeld T., Rice S. A., Matz C., Kjelleberg S. (2005) Grazing resistance of Pseudomonas aeruginosa in biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ. Microbiol. 7: 1593–1601

Zhu B., Fitzgerald D. G., Mayer C. M., Rudstam L. G., Mills E. L. (2006) Alteration of ecosystem function by zebra mussels in Oneida Lake: Impacts on submerged macrophytes. Ecosystems 9: 1017–1028

Zhu B., Mayer C. M., Heckathorn S. A., Rudstam L. (2007) Can dreissenid attachment and biodeposition affect submerged macrophyte growth? J. Aquat. Plant Mgt. 45: 71–76

Information

Information: Acta Protozoologica, 2011, Volume 50, Issue 1, pp. 23 - 31

Article type: Original article

Authors

The State University of New York, College at Oneonta, Oneonta, New York, USA

The State University of New York, College at Oneonta, Oneonta, New York, USA

Published at: 15.05.2011

Article status: Open

Licence: None

Percentage share of authors:

Paul J. Bischoff (Author) - 50%
Thomas G. Horvath (Author) - 50%

Article corrections:

-

Publication languages:

English