A Half-century of Research on Free-living Amoebae (1965-2017): Review of Biogeographic, Ecological and Physiological Studies
cytuj
pobierz pliki
RIS BIB ENDNOTEChoose format
RIS BIB ENDNOTEA Half-century of Research on Free-living Amoebae (1965-2017): Review of Biogeographic, Ecological and Physiological Studies
Publication date: 19.09.2018
Acta Protozoologica, 2018, Volume 57, Issue 1, pp. 1 - 28
https://doi.org/10.4467/16890027AP.18.001.8395Authors
A Half-century of Research on Free-living Amoebae (1965-2017): Review of Biogeographic, Ecological and Physiological Studies
This is a review of over 400 published research papers on free-living, non-testate amoebae during the approximate last half century (1965-2017) particularly focusing on three topics: Biogeography, Ecology, and Physiology. These topics were identified because of the substantial attention given to them during the course of the last half century, and due to their potential importance in issues of local and global expanse, such as: aquatic and terrestrial stability of habitats, ecosystem processes, biogeochemistry and climate change, and the role of eukaryotic microbes generally in ecosystem services. Moreover, there are close epistemological and thematic ties among the three topics, making a synthesis of the published research more systematic and productive. The number of reviewed publications for each of the three individual topics is presented to illustrate the trends in publication frequencies during the historical period of analysis. Overall, the number of total publications reviewed varied somewhat between 1965 and early 2000 (generally less than 10 per year), but increased to well over 10 per year after 2000. The number of Biogeography and Ecology studies identified in the online citations increased substantially after the mid 1990s, while studies focusing on Physiology were relatively more abundant in the first decade (1965-1974) and less were identified in the 1985 to 2004 period. Citations to the literature are listed in tables for each of the three topics for convenience in retrieving references to specific aspects, and representative examples of the cited research in the tables are reviewed in the text under subheads dedicated to each of the three topics. Biogeographic studies largely focused on the geographic distribution and localized patterns of occurrence of amoebae, with more recent studies incorporating more attention to likely correlates with environmental and biotic factors in the distribution and community composition of amoebae. Ecological studies reviewed in the later decades tended to focus more on community dynamics, the effects of environmental variables on communities (including climate-related topics), a trend toward more physiological ecology studies, combined field-based and experimental studies, and incorporation of newer methodologies such as molecular genetics. In general, physiology studies in the first decades of the review tended to focus on topics of cell physiology such as basic biochemistry, enzyme assays, mechanisms of cell division and development, encystment, and motility. Later studies examined broader topics such as osmoregulation, nutrition, fine structure evidence of cellular changes during the life cycle (including encystment and excystment), and issues related to asexual and sexual reproduction, with increasing substantial evidence of evolutionary patterns and phylogenetics based on molecular evidence. A final section on Conclusions and Recommendations summarizes the findings and presents some potentially productive approaches to future research studies on Amoebozoa within the three designated topics of analysis.
Introduction
Anderson O. R. (2017) Amoebozoan Lobose Amoebae (Tubulinea, Flabellinea, and others). In: Handbook of the Protists, (Eds. J. M. Archibald, A. G. B. Simpson, C. Slamovits) Springer-Verlag, International, pp. 1–35, DOI 10.1007/978-3-319-32669-6_2-1
Beare M. H., Coleman D. C., Crossley D. A. Jr., Hendrix P. F., Odum E. P. (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In: The significance and regulation of soil biodiversity. (Eds. H. P. Collins, G. P. Robertson, M. J. Klug) Kluwer, Netherlands, pp. 5–22
Behets J., Declerck P., Delaedt Y., Verelst L., Ollevier F. (2006) Quantitatve detection and differentiation of free-living amoeba species using SYBR Green-based real-time PCR melting curve analysis. Curr. Microbiol. 53: 506–509
Bradley S. G., Marciano-Cabral F. (1996) Diversity of free-living ‘naked” amoeboid organisms. J. Ind. Microbiol. 17: 314–321
Cavalier-Smith T., Fiore-Donno A. M., Chao E., Kudryavtsev A., Berney C., Snell E. A., Lewis R. (2015) Multigene phylogeny resolves deep branching Amoebozoa. Mol. Phylogenet. Evol. 83: 293–304
Dellinger O. P. (1906) Locomotion of Amoebae and allied forms. J. Exp. Zool. 3: 337–358
Douglas-Helders G. M. (2002) Epidemiology of amoebic gill disease. Ph. D. Thesis, University of Tasmania, 165 pp.
Fiore-Donno A. M., Weinert J., Wubet T., Bonkowski M. (2016) Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep. 6: 19068 DOI: 10.1038/srep19068
Fiore-Donno A. M., Weinert J., Wubet T., Bonkowski M. (2016) Metacommunity analysis of amoeboid protists in grassland soils. Sci. Rep. 6: 19068 DOI: 10.1038/srep19068
Geisen S., Bonkowski M. (2017) Methodological advances to study the diversity of soil protists and their functioning in soil food webs. Appl. Soil. Ecol., doi.org/10.1016/j.apsoil.2017.05.021
Geisen S., Tveit A. T., Clark I. M., Richter A., Svenning M. M., Bonkowski M., Urich T. (2015) Metatranscriptomic census of active protists in soils. Int. Soc. Microb. Ecol. J. 9: 2178–2190
Hauer G., Rogerson A. (2005) Heterotrophic protozoa from hypersaline environments. In: Adaptations to life at high salt concentrations in Archaea, Bacteria, and Eukarya. (Ed. N. Gunde-Cimerman et al.) Springer, Netherlands, pp. 519–539
Król-Turminska K., Olender A. (2017) Human infections caused by free-living amoebae. Ann. Agric. Environ. Med. 24: 254–260
Kuiper M. W., Valster R. M., Wullings B. A., Boonstra H., Smidt H., van der Kooij D. (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Env. Microbiol. 72: 5750–5756
Lahr D. J. G., Grant J., Nguyen T., Lin J. H., Katz L. A. (2011) Comprehensive phylogenetic reconstruction of Amoebozoa based on concatenated analyses of SSU-rDNA and actin genes. PLoS One: e22780, Doi.org/10.1371/journal.pone.0022780
Lei Y.-L., Stumm K., Wickham S. A., Berninger U.-G. (2014) Distributions and biomass of benthic ciliates foraminifera and amoeboid protists in marine, brackish, and freshwater sediments. J. Eukaryot. Microbiol. 61: 493–508
Leidy J. (1875) On the mode in which Amoeba swallows its food. Proc. Acad. Natl. Sci. Philadelphia, p. 143
Leidy J. (1878) Amoeba proteus. Am. Naturalist 12: 235–238
Mast S. O. (1910) Reactions in Amoeba to light. J. Exp. Zool. 9: 265–277
Mast S. O. (1926) Structure, movement, locomotiom, and stimulation in Amoeba. J. Morph. Physiol. 41: 347–425
Metcalf M. M. (1910) Studies upon Amoeba. J. Exp. Zool. A Ecol. Integr. Physiol. 9: 301–331
Pawlowski J., Burki F. (2009) Untangling the phylogeny of amoeboid protists. J. Eukaryot. Microbiol. 56: 16–25
Pritchard A. (1834) The Natural History of Animalcules. Whittaker and Co., London, pp. 22–24
Riviére D., Szczebara F. M., Berjeaud J.-M., Frère J., Héchard Y. (2006) Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J. Microb. Meth. 64: 78–83
Rodriguez-Zaragoza S. (1994) Ecology of free-living amoebae. Crit. Rev. Microbiol. 20: 225–241
Schuster F. L., Visvesvara G. S. (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 34: 1001–1027
Smirnov A.V., Chao E. E., Nassonova E. S., Cavalier-Smith T. (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162: 545–570
Tekle Y. I., Grant J., Anderson O. R., Nerad T. A., Cole J. C., Patterson D. J., Katz L. A. (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘‘Amoebozoa’’ upon removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol. 47: 339–352
Visvesvara G. S. (2010). Free-living amoebae as opportunistic agents of human disease. Int. J. Neuroparasitol. 1: doi:10.4303/jnp/N100802
Biogeography
Amaral-Zettler L. A., Cole J., Laatsch A. D., Nerad T. A., Anderson O. R., Reysenbach A.-L. (2006) Vannella epipetala n. sp. isolated from the leaf surface of Spondias nombin (Anacardiaceae) growing in the dry forest of Costa Rica. J. Eukaryot. Microbiol. 53: 522–530
Amin N. M., Keong P. C., Shing C. K. (2008) The identification and distribution of naked amoebae in the water and sediments of the Setiu wetlands, Terengganu. J. Sustain. Sci. Manage. 3: 23–29
Anderson O. R. (2000) Abundance of terrestrial gymnamoebae at a Noreastern U. S. site: A four-year study, including the El Niño winter of 1997–1998. J. Eukaryot. Microbiol. 4: 148–155
Armstrong E., Rogerson A., Leftley J. W. (2000) The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar. Coastal Shelf Sci. 50: 415–424
Bagatini I. L., Spínola A. L. G., Peres B. de M., Mansano A. da S., Rodrigues M. A. A., Batalha M. A. P. L., de Lucca J. V., Godinho M. J. L., Tundisi T. M., Seleghim M. H. R. (2013) Protozooplankton and its relationship with environmental conditions in 13 bodies of the Mogi-Guacu basin – SP, Brazil. Biota Neotrop. 13: 152–160.
Bamforth S. S. (1976) Rhizosphere-soil microbial comparisons in sub-tropical forests of southeastern Louisiana. Trans. Am. Microsc. Soc. 95: 613–621
Bamforth S. S. (1984) Microbial distributions in Arizona deserts and woodlands. Soil Biol. Biochem. 16: 133–137
Bamforth S. S. (2004) Water film fauna of microbiotic crusts of a warm desert. J. Arid Environ. 56: 413–423
Bamforth S. S. (2007) Protozoa from aboveground and ground soils of a tropical rain forest in Puerto Rico. Pedobiologia 50: 515–525
Bass P., Bischoff P. J. (2001) Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. J. Eukaryot. Microbiol. 48: 475–479
Baumgartner M., Yapi A., Gröbner-Ferreira R., Stetter K. O. (2003) Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs. Extremophiles 7: 267–274
Bell E. M., Weithoff G. (2008) Recruitment of Heliozoa, rhizopods and rotifers from the sediments of an extremely acidic lake during spring and early summer. Lake Reserv. Manage. 13: 105–115
Bhattacharya A., Ghosh M., Choudhury A. (1987) Seasonal abundance of Acanthamoeba rhysodes (Singh, 1952) (Protozoa: Gymnamoebia) in a mangrove litter-soil ecosystem of Gangetic-Estuary, India. J. Protozool. 34: 403–405
Bischoff P. J., Anderson O. R. (1998) Abundance and diversity of gymnamoebae at varying soil sites in northeastern U.S.A. Acta Protozool. 37: 17–21
Bovee E. C. (1965) An ecological study of amebas from a small stream in Northern Florida. Hydrobiologia 25: 69–87
Brown S., Smirnov A. V. (2004) Diversity of gymnamoebae in grassland soil in southern Scotland. Protistology 3: 191–195
Brown T. J., Cursons R. T. M., Keys E. A. (1982) Amoebae from Antarctic soil and water. Appl. Environ. Microbiol. 44: 491–493
Burnett B. R. (1977) Quantitative sampling of microbiota of the deep-sea benthos – I. Sampling techniques and some data from the abyssal central North Pacific. Deep-Sea Res. 24: 781–789
Butler H. G., Rogerson A. (2000) Naked amoebae from the benthic sediments in the Clyde Sea area, Scotland. Ophelia 53: 37–54
Caron D. A., Gast R. J., Garneau M. E. (2017) Sea ice as a habitat for micrograzers. In: Sea Ice (3rd Ed.), (Ed. D. N. Thomas). Wiley, Chichester, pp. 370–393
Davidson L. A., Davidson A. E. (2005) The range of protists in Mono Lake, a hypersaline soda lake in the eastern sierras.
Davis P. G., Caron D. A., Sieburth J. McN. (1978) Oceanic amoebae from the North Atlantic: Culture, distribution, and taxonomy. Trans. Am. Microsc. Soc. 97: 73–88
Decamp O., Tsujino M., Kamiyama T. (1999) Abundance of naked amoebae in sediments of Hiroshima Bay, Seto Inland Sea of Japan. J. Eukaryot. Microbiol. 46: 160–164
de Jonckheere J. F., Murase J., Opperdoes F. R. (2011) A new thermophilic heterolobosean amoeba, Fumarolamoeba ceborucoi gen. nov., sp. nov., isolated near a fumarole at a volcano in Mexico. Acta Protozool. 50: 43–50
Dillon R. D., Walsh G. L., Bierle D. A. (1968) A preliminary survey of Antarctic meltwater and soil amoeba. Trans. Am. Microsc. Soc. 87: 486–492
Douglas-Helders G. M., O’Brien, D. P., McCorkell B. E., Zilberg D., Gross A., Carson J., Nowak B. F. (2003) Temporal and spatial distribution of paramoebae in the water column – a pilot study. J. Fish Dis. 26: 231–240
Dumack K., Koller R., Weber B., Bonkowski M. (2016) Estimated abundance and diversity of heterotrophic protists in South African biocrusts. S. Afr. J. Sci. 112: Art. #2015-0302, 5 pages. http://dx.doi.org/10.17159/ sajs.2016/20150302
Ettinger M. R., Webb S. R., Harris S. A., McIninch S. P., Garman G. C., Brown B. L. (2003) Distribution of free-living amoebae in James River, Virginia, USA. Parasitol. Res. 89: 6–15
Feest A., Madelin M. F. (1988) Seasonal population changes of myxomycetes and associated organisms in four woodland soils. FEMS Microbiol. Ecol. 53: 133–140
Fernandez-Leborans G., Valgañon B., de Zaldumbide M. C. (1999) Characterization of a marine sublittoral area facing the open sea, using epibenthic protists. Bull. Mar. Sci. 65: 725–743
Fernandez-Leborans G., Valgañon B., Perez E. (2001) Characterization of the protistan communities inhabiting the benthic area of an inner estuary. B. Mar. Sci. 68: 451–467
Finlay B. J., Curds C. R., Bamforth S. S., Bafort J. M. (1987) Ciliated protozoa and other microorganisms from two African soda Lakes (Lake Nakuru and Lake Simbi, Kenya). Archiv f. Protistenk. 133: 81–91
Garstecki T., Arndt H. (2000) Seasonal abundances and community structure of benthic rhizopods in shallow lagoons of the southern Baltic Sea. Europ. J. Protistol. 36: 103–115
Garcia-Sanchez A. M., Ariza C., Ubeda J. M., Martin-Sanchez P. M., Jurado V., Bastian F., Alabouvette C., Saiz-Jimenez C. (2013) Free-living amoebae in sediments from the Lascaux Cave in France. Int. J. Speleo. 42: 9–13
Geisen S., Fiore-Donno A. M., Walochnik J., Bonkowski M. (2014) Acanthamoeba everywhere: high diversity of Acnthamoeba in soils. Parasitol. Res. 113: 3151–3158
Gittelson S. M., Ferguson T. (1971) Temperature-related occurrence of protozoa. Hydrobiologia 37: 49–54
Griffths B. S. (2002) Spatial distribution of soil protozoa in an upland grassland. Europ. J. Protistol. 37: 371–373
Hada Y. (1967) The fresh-water fauna of the protozoa in Antarctica. Japanese Antarctic Research Expedition scientific reports. Special Issue 1: 209–215
Hauer G., Rogerson A., Anderson O. R. (2001) Platyamoeba pseudovannellida n. sp., a naked amoeba with wide salt tolerance isolated from the Salton Sea, California. J. Eukaryot. Microbiol. 48: 663–669
Juhl A. R., Anderson O. R. (2014) Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA). Estuar. Coast. Mar. Sci. 151: 45–53
Kiss Á. K., Ács É., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45: 121–138
Kudryavtsev A., Pawlowski J. (2013) Squamamoeba japonica n. g. n. sp. (Amoebozoa): A deep-sea amoeba from the Sea of Japan with a novel cell coat structure. Protist 164: 13–23
Lara E., Mitchell E. A. D., Moreira D., Garcia, P. L. (2011) Highly diverse and seasonally dynamic protist community in a pristine peat bog. Protist 162: 14–32
Li J., Li M. G., Yang J., Wang C. F., Ai Y., Xu R. L. (2010) The community structure of soil Sarcodina in Baiyun Mountain, Guangzhou, China. Eur. J. Soil Biol. 46: 1–5
Lighthart B. (1969) Planktonic and benthic bacterivorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean. J. Fish Res. Bd. Canada 26: 299–304
Lugo A., Alcocer J., Sanchez Ma. del R., Escobar E. (1998) Littoral protozoan assemblages from two Mexican hyposaline lakes. Hydrobiologia 381: 9–13
Mayes D. F., Rogerson A., Marchant H. J., Laybourn-Parry J. (1998) Temporal abundance of naked bacterivore amoebae in coastal East Antarctica. Estuar. Coastal Shelf Sci. 46: 565–572
Mayzlish-Gati E., Steinberger Y. (2007) Ameba community dynamics and diversity in a desert ecosystem. Biol. Fertil. Soils 43: 357–366
Moran D. M., Anderson O. R., Dennett M. R., Caron D. A., Gast R. J.
Mrva M. (2005) Diversity of active gymnamoebae (Rhizopoda, Gymnamoebae) in mosses of the Malé Karpaty Mts (Slovakia). Ekol. Bratislava 24: 51–58
Munson D. A. (1992) Marine Amoebae from Georgia coastal surface waters. Trans. Am. Microsc. Soc. 111: 360–364
Murzov S. A., Caron D. A. (1996) Sporadic high abundances of naked amoebae in Black Sea plankton. Aquat. Microb. Ecol. 11: 161–169
Muylaert K., Van Mieghem R., Sabbe K., Tackx M., Vyverman W. (2000) Dynamics and trophic roles of heterotrophic protists in the plankton of a freshwater tidal estuary. Hydrobiol. 432: 25–36
Ning Y.-Z., Shen Y.-F. (1998) Soil protozoa in typical zones of China: I. Faunal characteristics and distribution of species. Chinese J. Zool. 44: 5–10 (in Chinese)
Niyyati M., Latifi A. (2017) Free living amoeba belonging to Vannella spp. isolated from a hotspring in Amol City, Northern Iran. Novel. Biomed. 5: 85–88
Old K. M., Oros J. M. (1980) Mycophagous amoebae in Australian forest soils. Soil Biol. Biochem. 12: 169–175
Page F. C. (1971) A Comparative study of five fresh-water and marine species of Thecamoebidae. Trans. Am. Microsc. Soc. 90: 157–173
Page F. C. (1976) Some comparative notes on the occurrence of Gymnamoebia (Protozoa: Sarcodina) in British and American habitats. Trans. Am. Microsc. Soc. 95: 385–394
Patcyuk M. K., Dovgal I. V. (2012) Biotopic distribution of naked amoebas (Protista) in Ukrainian Polissya area. Vstn. Zool. 46: 36–41
Patsyuk M. K. (2014) Morphotypes in naked amoebas (Protista): Distribution in water bodies of Zhytomyr and Volyn Polissia (Ukraine) and possible ecological signifcance. Vstn. Zool. 48: 547–552
Revill D. L., Stewart K. W., Schlichting H. E., Jr. (1967) Passive dispersal of viable algae and protozoa by certain cranefiles and midges. Ecology 48: 1023–1027
Rivera F., Lugo A., Ramirez E., Bonilla P., Calderon A., Rodriguez S., Ortiz R., Gallegos E., Labastida A., Chavez M. P. (1992) Seasonal distribution of air-borne protozoa in Mexico City and its suburbs. Water Air Soil Poll. 61: 17–36
Rodríguez-Zaragoza S., García S. (1997) Species richness and abundance of naked amebae in the rhizoplane of the desert plant Escontria chiotilla (Cactaceae). J. Eukaryot. Microbiol. 44: 122–126
Rodríguez-Zaragoza S., Mayzlish E., Steinberger Y. (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev desert, Israel. Microbial Ecol. 49: 134–141
Rogerson A. (1991) On the abundance of marine naked amoebae on the surfaces of five species of macroalgae. FEMS Microbiol. Ecol. 85: 301–312
Rogerson A., Detwiler A. (1999) Abundance of airborne heterotrophic protists in ground level air of South Dakota. Atmos. Res. 51: 35–44
Rogerson A., Gwaltney C. (2000) High numbers of naked amoebae in the planktonic waters of a mangrove stand in southern Florida, USA. J. Eukaryot. Microbiol. 47: 235–241
Rogerson A., Hauer G. (2002) Naked amoebae (Protozoa) of the Salton Sea, California. Hydrobiologia 473: 161–177
Rogerson A., Laybourn-Parry J. (1992) The abundance of marine naked amoebae in the water column of the Clyde Estuary. Estuar. Coastal Shelf Sci. 34: 187–196
Sawyer T. K. (1971) Isolation and identification of free-living marine amoebae from Upper Chesapeake Bay, Maryland. Trans. Am. Microsc. Soc. 90: 43–51
Sawyer T. K. (1990) Marine amoebae in waters of Chincoteague Bay, Virginia: Ecological significance of “old” and “new” species. Va. J. Sci. 41: 433–440
Sawyer T. K., Nerad T. A., Visvesvara G. S. (1992) Acanthamoeba jacobsi sp. n. (Protozoa: Acanthamoebidae) from sewage contaminated ocean sediments. J. Helminthol. Soc. Wash. 59: 223–226
Seneviratna A. G. D. H., Waidyasekera P. L. D. (1995) Ecology and distribution of soil protozoa in the Bellanwila wetland. Vidyodaya J. Sci. 5: 79–87
Shatilovich A. V., Shmakova L. A., Mylnikov A. P., Cilichinsky D. A. (2009) Chapter 8 Ancient protozoa isolated from permafrost. In: Permafrost Soils, Soil Biology 16, (Ed. R. Margesin) Berlin, Springer-Verlag, pp. 97–115
Shmakova L. A., Rivkina E. M. (2015) Viable eukaryotes of the phylum Amoebozoa from the Arctic permafrost. Paleontol. J. 49: 572–577
Sleigh M. A., Baldock B. M., Baker J. H. (1992) Protozoan communities in chalk streams. Hydrobiologia 248: 53–64
Smirnov A. V. (2007) Cryptic freshwater amoeba species in the bottom sediments of Nivå Bay (Øresund, Baltic Sea). Europ. J. Protistol. 43: 87–94
Smirnov A. V., Goodkov A. V. (1996) Systematic diversity of gymnamoebae in the bottom sediments of a freshwater lake in Karelia (Lobosea, Gymnamoebia). Zoosyst. Rossica 4: 201–203
Smirnov A. V., Goodkov A. V. (2004) Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae) Eur. J. Protistol. 40: 113–118
Smirnov A. V., Thar R. (2003) Spatial distribution of Gymnamoebae (Rhizopoda, Lobosea) in brackish-water sediments at the scale of centimeters and millimeters. Protist 154: 359–369
Smirnov A. V., Thar R. (2004) Vertical distribution of Gymnamoebae (Rhizopoda, Lobosea) in the top layer of brackish-water sediments. Protist 155: 437–436
Smith H. G. (1982) The terrestrial protozoan fauna of South Georgia. Polar Biol. 1: 173–179
Smith H. G. (1996) Diversity of Antarctic terrestrial protozoa. Biodivers. Conserv. 5: 1379–1394
Solgi R., Niyyati M., Haghighi A., Nazemalhosseini Mojarad E. (2012) Occurrence of thermotolerant Hartmannella vermiformis and Naegleria spp. in hot spring of Ardebil Province, Northwest Iran. Iranian J. Parasitol. 6: 47–52
Stephenson S. L., Kalyanasundaram I., Lakhanpal T. N. (1993) A comparative biogeographical study of myxomycetes in the Mid-Appalachians of Eastern North America and two regions of India. J. Biogeogr. 20: 645–657
Timonen S., Christensen S., Flemming E. (2004) Distribution of protozoa in scots pine mycorrhizospheres. Soil Biol. Biochem. 36: 1087–1093
Tong S., Vørs N., Patterson D. J. (1997) Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol. 18: 91–106
Tyml T., Kostka M., Ditrich O., Dykova I. (2016) Vermistella arctica n. sp. nominates the genus Vermistella as a candidate for taxon with bipolar distribution. J. Eukaryot. Microbiol. 63: 210–219
Vørs N. (1992) Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990. Ophelia 36: 1–109
Walochnik J., Mulec J. (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp. nov. Acta Protozool. 48: 25–33
Wilkinson D. M., Smith H. G. (2006) An initial account of the terrestrial protozoa of Ascension Island. Acta Protozool. 45: 407–413
Ecology: Aquatic environments
Ahmad T. (2009) A study of fresh water protozoans with special reference to their abundance and ecology. J. Appl. Nat. Sci. 1: 166–169
Anderson O. R. (1994) Fine structure of the marine amoeba Vexillifera telmathalassa collected from a coastal site near Barbados with a description of salinity tolerance, feeding behavior and prey. J. Eukaryot. Microbiol. 41: 124–128
Anderson O. R. (1997) Annual abundances, diversity and growth potential of gymnamoebae in a shallow freshwater pond. J. Eukaryot. Microbiol. 44: 393–398
Anderson O. R. (1977) Fine structure of a marine ameba associated with a blue-green alga in the Sargasso Sea. J. Protozool. 24: 370–376
Anderson O. R. (2005) Effects of aqueous extracts from leaves and leaf litter on the abundance and diversity of soil gymnamoebae in laboratory microcosm cultures. J. Eukaryot. Microbiol. 52: 391–395
Anderson O. R. (2007) A seasonal study of the carbon content of planktonic naked amoebae in the Hudson Estuary and in a productive freshwater pond with comparative data for ciliates. J. Eukaryot. Microbiol. 54: 388–391
Anderson O. R. (2011) Particle-associated planktonic naked amoebae in the Hudson Estuary: Size-fractionation related densities, cell sizes and estimated carbon content. Acta Protozool. 50: 15–22
Anderson O. R. (2013) Naked amoebae in biofilms collected from a temperate freshwater pond. J. Eukaryot. Microbiol. 60: 429–431
Anderson O. R. (2016) The role of heterotrophic microbial communities in estuarine C budgets and the biogeochemical C cycle with implications for global warming: Research opportunities and challenges. J. Eukaryot. Microbiol. 63: 394–409
Anderson O. R., Rogerson A. (1995) Annual abundances and growth potential of gymnamoebae in the Hudson Estuary with comparative data from the Firth of Clyde. Europ. J. Protistol. 31: 223–233
Arndt H. (1993) A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton. Mar. Microb. Food Webs 7: 3–29
Artolozaga I., Santamaría E., López A., Begoña A., Iriberri J. (1997) Succession of bacterivorous protists on laboratory-made marine snow. J. Plankton Res. 19: 1429–1440
Baldock B. M., Baker J. H., Sleigh M. A. (1983) Abundance and productivity of protozoa in chalk streams. Oikos 6: 238–246
Bischoff P. J., Wetmore S. (2009) Seasonal abundances of naked amoebae in biofilms on shells of zebra mussels (Dreissena polymorpha) with comparative data from rock scrapings. J. Eukaryot. Microbiol. 56: 397–399
Bischoff P. J., Horvath T. G. (2011) Abundances of naked amoebae and macroflagellates in central New York lakes: Possible effects by zebra mussels. Acta Protozool. 50: 23–31
Butler H. G., Rogerson A. (1995) Temporal and spatial abundance of naked amoebae (Gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42: 724–730
Butler H. G., Rogerson A. (1996) Growth potential, production efficiency and annual production of marine benthic naked amoebae (gymnamoebae) inhabiting sediments of the Clyde Sea area, Scotland. Aquat. Microb. Ecol. 10: 123–129
Butler H. G., Edworthy M. G., Ellis-Evans J. C. (2000) Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshwater Biol. 43: 215–230
Canter H. M. (1973) A new primitive protozoan devouring centric diatoms in the plankton. Zool. J. Linn. Soc. 52: 63–83
Canter H. M., Lund J. W. G. (1968) The importance of Protozoa in controlling the abundance of planktonic algae in lakes. Proc. Linn. Soc. Lond. 179: 203–219
Caron D. A. (1991) Evolving role of protozoa in aquatic nutrient cycles. In: Protozoa and their role in marine processes. (Eds. P. C. Reid, C. M. Turley, P. H. Burkill). Berlin: Springer-Verlag, pp. 386–415
Caron D. A., Davis P. G., Madin L. P., Sieburth J. McN. (1982) Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797
Cowie P. R., Hannah F. (2006) Responses of four isolates of marine naked amoebae to reductions in salinity. J. Exptl. Mar. Biol. Ecol. 337: 196–204
Cowie P. R., Hannah F. (2007) Impact of laboratory-imposed physical disturbance on the abundance of four isolates of marine gymnamoebae. Mar. Biol. 151: 675–686
Davidson L. A., Davidson A. E. (2005) The range of protists in Mono Lake, a hypersaline soda lake in the eastern sierras. J. Eukaryot. Microbiol. 52: 11S
de Moraes J., Alfieri S. C. (2008) Growth, encystment and survival of Acanthamoeba castellanii grazing on different bacteria. FEMS Microbiol. Ecol. 66: 221–229
Dirren S., Salcher M. M., Blom J. F., Schweikert M., Posch T. (2014) Ménage-á-trois: The amoeba Nuclearia sp. from Lake Zurich with its ecto- and endosymbiotic bacteria. Protist 165: 745–758
Dyková I., Fiala I., Divoráková H., Peckova H. (2008) Living together: The marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labryinthula sp. Europ. J. Protistol. 44: 308–316
Fenchel T. (2010) The life history of Flabellula baltica Smirnov (Gymnamoebae, Rhizopoda): Adaptations to a spatially and temporally heterogeneous environment. Protist 161: 279–287
Finlay B. J., Clarke K. J., Cowling A. J., Hindle R. M., Rogerson A., Berninger U.-G. (1988) On the abundance and distribution of protozoa and their food in a productive freshwater pond. Europ. J. Protistol. 23: 205–217
Grell K. G. (1994) The feeding community of Synamoeba arenaria n. gen., n. sp. Arch. Protistenkd. 144: 143–146
Hauer G., Rogerson A. (2005) Remarkable salinity tolerance of seven species of naked amoebae (gymnamoebae). Hydrobiologia 549: 33–42
Holt A. R., Warren P. H., Gaston K. J. (2002) The importance of biotic interactions in abundance-occupancy relationships. J. Anim. Ecol. 71: 846–854
Huws S. A., McBain A. J., Gilbert P. (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J. Appl. Microbiol. 98: 238–244
Jeon K. W., Jeon M. S. (1976) Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components. J. Cell Physiol. 89: 337–344
Jeon K. W., Lorch J. L. (1967) Unusual intra-cellular bacterial infection in large, free-living amoebae. Exp. Cell Res. 48: 236–240
Johnson P. W., Sieburth J. McN. (1976) In situ morphology of nitrifying-like bacteria in aquaculture systems. Appl. Environ. Microbiol. 31: 423–432
Khwon W. J., Park J. S. (2017) Morphology and phylogenetic analyses of three novel Naegleria isolated from freshwaters on Jeju Island, Korea, during the winter period. J. Eukaryot. Microbiol. doi/10.1111/jeu.12434/epdf
Kiss Á. K., Ács É., Kiss K. T., Török J. K. (2009) Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Europ. J. Protistol. 45: 121–138
Kostomarova-Nikitina L. P. (1967) The effect of Amoeba verrucosa on Ascaris eggs. Med. Parazitol. (Mosk.) 36: 181–184
Kusch J. (1993) Behavioural and morphological changes in ciliates induced by the predator Amoeba proteus. Oecologia 96: 354–359
Lawler S. P., Morin P. J. (1993) Food web architecture and population dynamics in laboratory microcosms of protists. Am. Nat. 141: 675–686
Laybourn-Parry J., Jones K., Holdich J. P. (1987) Grazing by Mayorella sp. (Protozoa: Sarcodina) on cyanobacteria. Funct. Ecol. 1: 99–104
Lesen A. E., Juhl A. R., Anderson O. R. (2010) Heterotrophic microplankton in the lower Hudson River Estuary: Potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61: 45–56
Lugo A., Alcocer J., Sanchez Ma. del R., Escobar E. (1998) Littoral protozoan assemblages from two Mexican hyposaline lakes. Hydrobiologia 381: 9–13
Ma A. T., Daniels E. F., Gulizia N., Brahamsha B. (2016) Isolation of diverse amoebal grazers of freshwater cyanobacteria for the development of model systems to study predator-prey interactions. Algal Res. 13: 85–93
Mayes D. F., Rogerson A., Marchant H. J., Laybourn-Parry J. (1998) Temporal abundance of naked bacterivore amoebae in coastal East Antarctica. Estuar. Coast. Shelf Sci. 46: 565–572
Mbugua M. W. (2008) Characterization of unusual Gymnamoebae isolated from the marine environment. Theses, Dissertations and Capstones. Paper 724, Marshall University, Huntington,
Magnet A., Fenoy S., Galván A. L., Izquierdo F., Rueda C., Vadillo C. F., del Aguila C. (2013) A year long study of the presence of free living amoeba in Spain. Water Res. 47: 6966–6972
Moss A. G., Estes A. M., Muellner L. A., Morgan D. D. (2001) Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer. Hydrobiologia 452: 285–304
Mrva M. (2006) Diversity of gymnamoebae (Rhizopoda, Gymnamoebia) in a rain-water pool. Biologia Bratislava 61: 627–629
Oshima N., Takeda F., Ishii K. (1986) Responses of freshwater amoebae to salinity changes. Comp. Biochem. Physiol. 85A: 395–399
Parry J. D. (2004) Protozoan grazing of freshwater biofilms. Adv. Appl. Microbiol. 54: 167–196
Peglar M. T., Nerad T. A., Anderson O. R., Gillevet P. M. (2004) Identification of amoebae implicated in the life cycle of Pfiesteria and Pfiesteria-like dinoflagellates. J. Eukaryot. Microbiol. 51: 542–552
Polne-Fuller M. (1987) A multinucleated marine amoeba which digests seaweeds. J. Protozool. 34: 159–165
Ramirez E., Robles E., Martinez B. (2010) Free-living amoebae isolated from water-hyacinth root (Eichhornia crassipes). Exp. Parasitol. 126: 42–44
Rogerson A., Hannah F., Gothe G. (1996) The grazing potential of some unusual marine benthic amoebae feeding on bacteria. Europ. J. Protistol. 32: 271–279
Rogerson A., Williams A. G., Wilson P. C. (1998) Utilization of macroalgal carbohydrates by the marine amoeba Trichosphaerium sieboldi. J. Mar. Biol. Ass. U. K. 78: 733–744
Rogerson A., Anderson O. R., Vogel C. (2003) Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res. 25: 1359–1365
Sawyer T. K. (1980) Marine amoebae from clean and stressed bottom sediments of the Atlantic Ocean and Gulf of Mexico. J. Protozool. 27: 13–32
Sawyer T. K. (2011) The influence of seawater media on growth and encystment of Acanthanoeba polyphaga. P. Helm. Soc. Wash. 37: 182–188
Salt G. W. (1968) The feeding of Amoeba proteus on Paramecium aurelia. J. Protozool. 15: 275–280
Schulz F., Tyml T., Pizzetti I., Dyková I., Fazi S., Kostka M., Horn M. (2015) Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. Sci. Rep. 5: 13381, DOI: 10.1038/srep13381
Smirnov A. V. (1999) An illustrated survey of gymnamoebae isolated from anaerobic sediments of the Niva Bay (the sound) (Rhizopoda, Lobosea). Ophelia 50: 113–148
Smirnov A. V. (2001a) Diversity of gymnamoebae (Rhizopoda) in artificial cyanobacterial mats after four years in the laboratory. Ophelia 54: 223–227
Smirnov A. V. (2001b) Vannella ebro n. sp. (Lobosea, Gymnamoebia), isolated from cyanobacterial mats in Spain. Europ. J. Protistol. 37: 147–153
Smirnov A. V., Bedjagina O. M., Goodkov A. V. (2011) Dermamoeba algensis n. sp. (Amoebozoa, Dermamoebidae) – An algivorous lobose amoeba with complex cell coat and unusual feeding mode. Europ. J. Protistol. 47: 67–78
Urrutia-Cordero P., Agha R., Cirés S., Lezcano M. Á., Sánchez-Conteras M., Waara K.-O., Utkilen H., Quesada A. (2013) Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. Aquat. Toxicol. 130–131: 9–17
Van Wichelen J., Van Gremberghe I., Vanormelingen P., Debeer A.-E., Leporcq B., Menzel D., Codd G. A., Descy J.-P., Vyverman W. (2010) Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environ. Microbiol. 12: 2797–2813
Van Wichelen J., D’Hondt S., Claeys M., Vyverman W., Berney C., Bass D., Vanormelingen P. (2016) A hotspot of amoebae diversity: 8 new naked amoebae associated with the plankton bloom-forming cyanobacterium Microcystis. Acta Protozool. 55: 61–87
Wang Z., Wu M. (2014) Complete genome sequence of the endosymbiont of Acanthamoeba strain UWC8, an amoeba endosymbiont belonging to the “Candidatus Midichloriaceae” family in Rickettsiales. Genome Announc. 2:e00791-14. doi:10.1128/genomeA.00791-14
Wörner U., Zimmerman-Timm H., Kausch H. (2000) Succession of protists on estuarine aggregates. Microb. Ecol. 40: 209–222
Wright S. J. L., Redhead K., Maudsley H. (1981) Acanthamoeba castellanii, a predator of cyanobacteria. J. Gen. Microbiol. 125: 293–300
Xinyao L., Miao S., Yonghong L., Yin G., Zhongkai Z., Donghui W., Weizhong W., Chencai A. (2006) Feeding characteristics of an Amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: Food selection, ingestion and digestion progress. Microb. Ecol. 51: 315–325
Xu M., Cao H., Xie P., Deng D., Feng W., Xu J. (2005) The temporal and spatial distribution, composition and abundance of protozoa in Chaohu Lake China: Relationship with eutrophication. Europ. J. Protistol. 41: 183–192
Yagita K., Matias R. R., Yasuda T., Natividad F. F., Enriquez G. L., Endo T. (1995) Acanthamoeba sp. from Philippines: Electron microscopy studies on naturally occurring bacterial symbionts. Parasitol. Res. 81: 98–102
Yamamoto Y. (1981) Observation on the occurrence of microbial agents which cause lysis of blue-green algae in Lake Kasumigaura. Jap. J. Limnol. 42: 20–27
Zubkov M. V., Sleigh M. A. (1999) Growth of amoebae and flagellates on bacteria deposited on filters. Microb. Ecol. 37: 107–115
Ecology: Terrestrial environments
Amewowor D. H. A. K., Madelin M. F. (1991) Numbers of myxomycetes and associated microorganisms in the root zones of cabbage (Brassica oleracea) and broad bean (Vicia faba) in field plots. FEMS Microbiol. Ecol. 86: 69–82
Andersen K. S., Winding A. (2004) Non-target effects of bacterial biological control agents on soil Protozoa. Biol. Fertil. Soils 40: 230–236
Anderson O. R. (2002) Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: Evidence of microbiocoenoses. J. Eukaryot. Microbiol. 49: 17–23
Anderson O. R. (2004) The effects of release from cold stress on the community composition of terrestrial gymnamoebae: A laboratory-based ecological study simulating transition from winter to spring. Acta Protzool. 43: 21–28
Anderson O. R. (2008) The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: Biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes. J. Eukaryot. Microbiol. 55: 145–150
Anderson O. R. (2010) An analysis of respiratory activity, Q10, and microbial community composition of soils from high and low tussock sites at Toolik, Alaska. J. Eukaryot. Microbiol. 57: 218–219
Anderson O. R. (2012) The fate of organic sources of carbon in moss-rich tundra soil microbial communities: A laboratory experimental study. J. Eukaryot. Microbiol. 59: 564–570
Anderson O. R. (2014) The role of soil microbial communities in soil carbon processes and the biogeochemical carbon cycle. In: Soil Carbon: Types, Management Practices and Environmental Benefits. (Ed. A. Margit). New York, Nova Publishers. pp. 1–50
Anderson O. R. (2016) Experimental evidence for non-encysted, freeze-resistant stages of terrestrial naked amoebae capable of resumed growth after freeze-thaw events. Acta Protozool. 55: 19–25
Anderson O. R., McGuire K. (2013) C-biomass of bacteria, fungi, and protozoan communities in Arctic tundra soil, including trophic relationships. Acta Protozool. 52: 217–227
Anderson O. R., Gorrell T., Bergen A., Kruzansky R., Levandowsky M. (2001) Naked amoebas and bacteria in an oil-impacted salt marsh community. Microb. Ecol. 42: 474–481
Anderson O. R., Griffin K. (2001) Abundances of protozoa in soil of laboratory-grown wheat plants cultivated under low and high atmospheric CO2 concentrations. Protistology 2: 76–84
Anderson O. R., Juhl A. R., Bock N. (2017) Effects of organic carbon enrichment on respiration rates, phosphatase activities, and abundance of heterotrophic bacteria and protists in organic-rich Arctic and mineral-rich temperate soil samples. Polar Biology, DOI 10.1007/s00300-017-2166-4
Anderson R. V., Elliott E. T., McClellan J. F., Coleman D. C., Cole C. V., Hunt H. W. (1977–1978) Trophic interactions in soils as they affect energy and nutrient dynamics. III. Biotic interactions of bacteria, amoebae, and nematodes. Microb. Ecol. 4: 361–371
Anderson T. R., Patrick Z. A. (1978) Mycophagous amoeboid organisms from soil that perforate spores of Thielaviopsis basicola and Cochliobolus sativus. Phytopathology 68: 1618–1626
Andriuzzi W. S., Ngo P.-T., Geisen S., Keith A. M., Dumack K., Bolger T., Bonkowski M., Brussaard L., Faber J. H., Chabbi A., Rumpel C., Schmidt O. (2016) Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biol. Fertil. Soils 52: 91–100
Bamforth S. S. (1988) Interactions between Protozoa and other organisms. Agr. Ecosyst. Environ. 24: 229–234
Band N. R. (1995) ELF communications system ecological monitoring program: Soil amoeba – final report. Technical Report D06214-1. IIT Research Institute, Chicago ILL., 97 pp.
Barrett R. A., Alexander M. (1977) Resistance of cysts of amoebae to microbial decomposition. Appl. Environ. Microbiol. 33: 670–674
Bischoff P. J. (2002) An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A. Acta Protozool. 41: 183–189
Bischoff P. J., Connington K. (2016) Winter abundances of naked amoebae in the soil system of the invasive species Japanese knotweed (Fallopia japonica) with comparative data from adjacent sites. Acta Protozool. 55: 155–160
Bonkowski M. (2004) Protozoa and plant growth: The microbial loop in soil revisited. New Phytol. 162: 617–631
Bonkowski M., Schaefer M. (1997) Interactions between earthworms and soil protozoa: A trophic component in the soil food web. Soil Biol. Biochem. 29: 499–502
Bryant R. J., Woods L. E., Coleman D. C., Fairbanks B. C., McClellan J. F., Cole C. V. (1982) Interactions of bacterial and amoebal populations in soil microcosms with fluctuating moisture content. Appl. Environ. Microbiol. 43: 747–752
Cervero-Arago S., Rodíguez-Martinez S., Canals O., Salvadó H., Araujo R. M. (2013) Effect of thermal treatment on free-living amoeba inactivation. J. Appl. Microbiol. 116: 728–736
Chakraborty S., Theodorou C., Bowen G. D. (1985) The reduction of root colonization by mycorrhizal fungi by mycophagous amoebae. Can. J. Microbiol. 31: 295–297
Clarholm M. (1981) Protozoan grazing of bacteria on soil-impact and importance. Microb. Ecol. 7: 343–350
Coleman D. C., Cole C. V., Anderson R. V., Blaha M., Campion M. K., Clarholm M., Elliott E. T., Hunt H. W., Shaefer B., Sinclair J. (1977) An analysis of rhizosphere-saprophage interactions in terrestrial ecosystems. Ecol. Bull. (Stockholm) 25: 299–309
Cortés-Pérez S., Rodríguez-Zaragoza S., Mendoza-López Ma. R. (2014) Trophic structure of amoeba communities near roots of Medicago sativa after contamination with Fuel Oil No. 6. Microb. Ecol. 67: 430–442
Danso S. K. A., Keya S. O., Alexander M. (1975) Protozoa and the decline of Rhizobium populations added to soil. Can. J. Microbiol. 21: 884–895
Darby B. (2008) Influence of altered temperature and precipitation on desert microfauna and their role in mediating soil nutrient availability. Graduate College Dissertations and Theses, Paper 64, University of Vermont, 182 pp.
Darbyshire J. F. (2005) The use of biofilms for observing protozoan movement and feeding. FEMS Microbiol. Lett. 244: 329–333
Darbyshire J. F., Greaves M. P. (1967) Protozoa and bacteria in the rhizosphere of Sinapis alba L., Trifolium repens L., and Lolium perenne L. Can. J. Microbiol. 13: 1057–1068
Darbyshire J. F., Davidson M. S., Scott N. M., Shipton P. J. (1977) Some microbial and chemical changes in soil near the roots of spring barley, Hordium vulgare L. infected with take-all-disease. Ecol. Bull. 25: 374–380
Denet E., Coupat-Goutaland B., Nazaret S., Pélandakis M., Favre-Bonté S. (2017) Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol. Res. 116: 3151–3162
Dreschler C. (1969) A Tulsanella parasitic on Amoeba terricola. Amer. J. Bot. 56: 1217–1220
Dupont A. Ö. C., Girffiths R. I., Bell T., Bass D. (2016) Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environ. Microbiol. 18: 2010–2024
Ekelund F., Olsson S., Johansen A. (2003) Changes in the succession and diversity of protozoan and microbial populations in soil spiked with a range of copper concentrations. Soil Biol. Biochem. 35: 1507–1516
Ekelund F., Saj S., Vestergård M., Bertaux J., Mikola J. (2009) The “soil microbial loop” is not always needed to explain protozoan stimulation of plants. Soil Biol. Biochem. 41: 2336–2342
Elliott E. T., Cole C. V., Coleman D. C., Anderson R. V., Hunt H. W., McClellan J. F. (1979) Amoebal growth in soil microcosms: A model system of C, N, and P trophic dynamics. Intern. J. Environmental Studies 13: 169–174
Elliott E. T., Anderson R. V., Coleman D. C., Cole C. V. (1980) Habitable pore space and microbial trophic interactions. Oikos 35: 327–335
Finlay B. J., Black H. I. J., Brown S., Clarke K. J., Esteban G. F., Hindle R. M., Olmo J. L., Rollett A., Vickerman K. (2000) Estimating the growth potential of the soil protozoan community. Protist 151: 69–80
Gabilondo R., Fernández-Montiel I., Garcia-Barón I., Bécares E. (2015) The effects of experimental increases in underground carbon dioxide on edaphic protozoan communities. Int. J. Greenh. Gas Con. 41: 11–19
Georgieva S., Christensen S., Petersen H., Gjelstrup P., Thorup-Kristensen K. (2005) Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots. Soil Biol. Biochem. 37: 1145–1155
Geisen S., Bandow C., Römbke J., Bonkowski M. (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57: 205–213
Geisen S., Koller R., Hünninghaus M., Dumack K., Urich T., Bonkowski M. (2016) The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol. Biochem. 94: 10–18
Gould W. D., Coleman D. C., Rubink A. J. (1979) Effect of bacteria and amoebae on rhizosphere phosphatase activity. Appl. Environ. Microbiol. 37: 943–946
Greub G., La Scola B., Raoult D. (2003). Parachlamydia acanthamoeba is endosymbiotic or lytic for Acanthamoeba polyphaga depending on the incubation temperature. Ann. N. Y. Acad. Sci. 990: 628–634
Grün A.-L., Sheid P., Hauröder B., Emmerling C., Manz W. (2017) Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba. J. Plant Nutr. Soil Sci. 180: 602–613
Horn M., Wagner M. (2004) Bacterial endosymbionts of free-living amoebae. J. Eukaryot. Microbiol. 51: 509–514
Jahnke J., Wehren T., Priefer U. B. (2007) In vitro studies of the impact of the naked soil amoeba Thecamoeba similis Greef, feeding on phototrophic soil biofilms. Europ. J. Soil Biol. 43: 14–22
Jousset A. (2012) Ecological and evolutive implications of bacterial defences against predators. Environ. Microbiol. 14: 1830–1843
Koller R. (2008) Amoebae in the rhizosphere and their interactions with arbuscular mycorrhizal fungi: effects on assimilate partitioning and nitrogen availability for plants. Doctor of Sciences Thesis, Technische Universität, Darmstadt, 116 pp.
Koller R., Scheu S., Bonkowski M., Robin C. (2013) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol. Biochem. 65: 204–210
Krome K., Rosenberg K., Bonkowski M., Scheu S. (2009) Grazing of protozoa on rhizosphere bacteria alters growth and reproduction of Arabidopsis thaliana. Soil Biol. Biochem. 41: 1866–1873
Laird D. D. (1966) The pitcher plant, Sarracenia purpurea L., as an ecosystem. M. S. Thesis, The University of British Columbia, Vancouver, CA, 82 pp.
Lin B., Zhao X., Zheng Y., Qi S., Liu X. (2017) Effect of grazing intensity on protozoan community, microbial biomass, and enzyme activity in an alpine meadow on the Tibetan plateau. J. Soil. Sed. 12: 2752–2762
Liao Q. Y., Li J., Zhang J. H., Li M., Lu Y., Xu R. I. (2009) An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Europ. J. Soil Biol. 45: 214–219
Michel R., Walochnik J., Scheid P. (2014) Article for the “Free-living amoebae Special Issue”: Isolation and characterisation of various amoebophagous fungi and evaluation of their prey spectrum. Exp. Parasitol. 145: S131–S136
Monroy F., Aira M., Dominguez J. (2008) Changes in the density of nematodes, protozoa and total coliforms after transit through the gut of four epigeic earthworms (Oligochaeta). Appl. Soil Ecol. 39: 127–132
Mrva M. (2005) Diversity of active gymnamoebae (Rhizopoda, Gymnamoebia) in mosses of the Malé Karpaty Mts (Slovakia). Ekológia (Bratislava) 24: 51–58
Mulec J., Dietersdorfer E., Üstüntürk-Onan M., Walochnik J. (2016) Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat. Parasitol. Res. 115: 1375–1383
Murase J., Frenzel P. (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol. Ecol. 65: 408–414
Neidig N., Jousset A., Nunes F., Bonkowski M., Rüdiger J. P., Scheu S. (2010) Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct. Ecol. 24: 1133–1138
Okafor N. (1966) Ecology of micro-organisms on chitin buried in soil. J. Gen. Microbiol. 44: 311–327
Old K. M., Darbyshire J. F. (1978) Soil fungi as food for giant amoebae. Soil Biol. Biochem. 10: 93–100
Orosz E., Farkas A., Ködöböcz L., Becságh P., Danka J., Kucsera I., Füleky G. (2013) Isolation of Acanthamoeba from the rhizosphere of maize and lucerne plants. Acta Microbiol. Imm. H. 60: 29–39
Parker L. W., Freckman D. W., Steinberger Y., Driggers L., Whitford W. G. (1984a) Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora, and Protozoa. Pedobiologia 27: 185–195
Parker L. W., Santos P. F., Phillips J., Whitford W. G. (1984b) Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan Desert annual. Lepidium lastocarpum. Ecol. Monogr. 54: 339–360
Persson T., Bååth E., Clarholm M., Lundkvist H., Söderström B. E., Sohlenius B. (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a scots pine forest. Ecol. Bull. 32: 419–459
Qi S., Zheng H., Lin Q., Li G., Xi Z., Zhao X. (2011) Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant Soil 340: 117–126
Rodriguez-Zaragoza S., Mayzlish E., Steinberger Y. (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb. Ecol. 49: 134–141
Rodriguez-Zaragoza S., Whitford W. G., Steinberger Y. (2007) Effects of temporally persistent ant nests on soil protozoan communities and the abundance of morphological types of amoeba. Appl. Soil Ecol. 37: 81–87
Rogerson A. (1982) An estimate of the annual production and energy flow of the large naked amoebae population inhabiting a Sphagnum bog. Archiv f. Protistenk. 126: 145–149
Rønn R., Gavito M., Larsen J., Jakobsen I., Frederiksen H., Christensen S. (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol. Biochem. 34: 923–932
Schnürer J., Clarholm M., Rosswall T. (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol. Biochem. 17: 611–618
Seneviratna A. G. D. H., Waidyasekera P. L. D. (1995) Ecology and distribution of soil protozoa in the Bellanwila wetland. Vidyodaya J. Sci. 5: 79–87
Shatilovich A. V., Shmakova L. A., Mylnikov A. P., Gilichinsky D. A. (2009) Chapter 8: Ancient protozoa isolated from permafrost. In: Permafrost Soils, Soil Biology 16, (Ed. R. Margesin). Springer-Verlag, Berlin, pp. 97–115
Stapleton L. M., Crout N. M. J., Säwström C., Marshall W. A., Poulton P. R., Tye A. M., Laybourn-Parry J. (2005) Microbial carbon dynamics in nitrogen amended Arctic tundra soil: Measurement and model testing. Soil Biol. Boiochem. 37: 2088–2098
Stout J. D. (1984) The protozoan fauna of a seasonally inundated soil under grassland. Soil Biol. Biochem. 16: 121–125
Takenouchi Y., Iwasaki K., Murase J. (2016) Response of the protistan community of a rice field soil to different oxygen tensions. FEMS Micriobiol. Ecol. 92, doi: 10.1093/femsec/fiw104
Vargas R., Hattori T. (1990) The distribution of protozoa among soil aggregates. FEMS Microbiol. Ecol. 74: 73–78
Weekers P. H. H., Engelberts A. M. W., Vogels G. D. (1995) Bacteriolytic activities of the free-living soil amoebae, Acanthamoeba castellanii, Acanthamoeba polyphaga and Hartmannella vermiformis. A. Van Leeuw. 68: 237–243
Weidner S., Latz E., Agaras B., Valverde C., Jousset A. (2017) Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant Soil 410: 509–515
Zahn G., Wagai R., Yonemura S. (2016) The effects of amoebal bacterivory on carbon and nitrogen dynamics depend on temperature and soil structure interactions. Soil Biol. Biochem. 94: 133–137
Zhang S.-H., Cao Z.-P., Cheng Y.-F., Zhang G. (2012) Change of soil protozoa community structure under different farming practices. J. Anim. Vet. Adv. 17: 3140–3147
Physiology: Cell, nutrition, and symbioses
Adam K. M. G., Blewett D. A. (1967) Carbohydrate utilization by the soil amoeba Hartmannella castellanii. J. Protozool. 14: 277–282
Ahmad M., Couillard P. (1974) The contractile vacuole in Amoeba proteus: Temperature effects. J. Protozool. 21: 330–336
Ahn T. I., Jeon K. W. (1979) Growth and electron microscopic studies on an experimentally established bacterial endosymbiosis in amoebae. J. Cell Physiol. 98: 49–58
Anderson O. R. (2006) A method for estimating cell volume of amoebae based on measurements of cell length of motile forms: Physiological and ecological applications. J. Eukaryot. Microbiol. 53: 185–187
Anderson O. R., McGuire K. (2013) C-biomass of bacteria, fungi, and protozoan communities in Arctic tundra soil, including trophic relationships. Acta Protozool. 52: 217–227
Avery S. V., Harwood J. L., Lloyd D. (1995) Quantification and characterization of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Appl. Environ. Microbiol. 61: 1124–1132
Baldock B. M., Rogerson A., Berger J. (1982) Further studies on respiratory rates of freshwater amoebae (Rhizopoda, Gymnamoebia). Microb. Ecol. 8: 55–60
Barberá M. J., Ruiz-trillo I., Tufts J. Y. A., Bery A., Silberman J. D., Roger A. J. (2010) Sawyeria marylandensis (Heterolobosea) has hydrogenosome with novel metabolic properties. Eukaryot. Cell 9: 1913–1924
Bunt J. S. (1970) Preliminary observations on the growth of a naked marine ameba. Bull. Mar. Sci. 20: 315–330
Butler H., Rogerson A. (1997) Consumption rates of six species of marine benthic naked amoebae (Gymnamoebia) from sediments in the Clyde Sea area. J. Mar. Biol. Ass. U.K. 77: 989–997
Cann J. P. (1986) The feeding behavior and structure of Nuclearia delicatula (Filosea: Aconchulinida). J. Protozool. 33: 392–396
Chang N.-K., Lim C.-S., Bae J.-H. (1991) The characterization and activity changes of phosphatases in Amoeba sp. to the light stimuli and its response pattern. Korean J. Ecol. 14: 101–111 (in Korean with English Abstract)
Chapman-Andresen C. (1971) Biology of the large amoebae. Ann. Rev. 25: 27–48
Chattergee S. (1989) Pinocytosis in heterospecific amoebae. Cell Biol. Int. Reps. 13: 271–274
Christiansen R. G., Marshall J. M. (1965) A study of phagocytosis in the ameba Chaos chaos. J. Cell Biol. 25: 443–457
Cometa I., Schatz S., Trzyna W., Rogerson A. (2011) Tolerance of naked amoebae to low oxygen levels with an emphasis on the genus Acanthamoeba. Acta Protozool. 50: 33–41
Crawford D. W., Rogerson A., Laybourn-Parry J. (1994) Respiration of the marine amoeba Trichosphaerium sieboldi determined by 14C labelling and Cartesian diver methods. Mar. Ecol. Prog. Ser. 112: 135–142
Delafont V., Samba-Louaka A., Bouchon D., Laurent M., Héchard Y. (2015) Shedding light on microbial dark matter: A TM6 bacterium as natural endosymbiont of a free-living amoeba. Env. Microbiol. Rep. 7: 970–978
Dolphin W. D. (1970) Photoinhibition of growth in Acanthamoeba castellanii cultures. J. Bacteriol. 103: 755–760
Drainville G., Gagnon A. (1973). Osmoregulation in Acanthamoeba castellanii – I. Variations of the concentrations of free intracellular amino acids and of the water content. Comp. Biochem. Physiol. 45A: 379–388
Geoffrion Y., Larochelle J. (1984) The free amino acid contribution to osmotic regulation in Acanthamoeba castellanii. Can. J. Zool. 62: 1954–1959
Goodall R. J., Thompson J. E. (1971) A scanning electron microscopic study of phagocytosis. Exptl. Cell Res. 64: 1–8
Gutiérrez G., Chistyakova L. V., Villalobo E., Kostygov A. Y., Frolov A. O. (2017) Identification of Pelomyxa palustris endosymbionts. Protist 168: 408–424
Halvey S., Finkelstein S. (1965) Lipid composition of soil amoebae. J. Protozool. 12: 250–252
Hansson S. E., Johansson G., Josefsson J.-O. (1968) Oxygen uptake during pinocytosis in Amoeba proteus. Acta Physiol. Scand. 73: 491–500
Heal O. W. (1967) Quantitative studies on soil amoebae. In: Progress in soil biology (Ed. O. Graff, J. E. Satchell), North Holland Publishing Corp., Amsterdam, pp. 120–125
Jeon K. W., Jeon M. S. (1976) Scanning electron microscope observations of Amoeba proteus during phagocytosis. J. Protozool. 23: 83–86
Josefsson J.-O. (1968) Induction and inhibition of pinocytosis in Amoeba proteus. Acta Physiol. Scand. 73: 481–490
Kühn S. F. (1996/97) Rhizamoeba schepfii sp. nov., a naked amoeba feeding on marine diatoms (North Sea, German Bight). Arch. Protistenkd. 147: 277–282
Landau J. V. (1965) High hydrostatic pressure effects on Amoeba proteus: Changes in shape, volume, and surface area. J. Cell Biol. 24: 332–336
Larochelle J., Gagnon A. (1978) Osmoregulation in Acanthamoeba castellanii – III. Relations between dry weight, water, and inorganic ions, and control of the ionic levels. Comp. Biochem. Physiol. 59A: 119–123
Leger M. M., Gawryluk R. M. R., Gray M. W., Roger A. J. (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS ONE 8(9): e69532. doi:10.1371/journal.pone.0069532
Lima P. C., Taylor R. S., Cook M. (2016) Involvement of contractile vacuoles in the osmoregulation process of the marine parasitic amoeba Neoparamoeba perurans. J. Fish Dis. 39: 629–633
Liu C.-H., Fong B. A., Alfano S. A., Rakhlin I., Wang W. B., Ni X. H., Yang Y. L.., Zhou F., Zuzolo R. C., Alfano R. R. (2011) Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy. Proc. SPIE 7895, Optical Biopsy IX, 78950Y (17 February 2011), doi:10.1117/12.875293
Mayes D. F., Rogerson A., Marchant H., Laybourn-Parry J. (1997) Growth and consumption rates of bacterivorous Antarctic naked marine amoebae. Mar. Ecol. Prog. Ser. 160: 101–108
Michel R., Hauröder B., Müller K.-D. (2010) Saccamoeba limax (Hartmannellidae) isolated from Elodea sp. was colonized by two strains of endocytic bacteria and a bacteriophage. Endocyt. Cell Res. 20: 38–44
Müller M. (1969a) Peroxisomes of protozoa. Ann. N. Y. Acad. Sci. 168: 292–301
Müller M. (1969b) Lysosomal hydrolases in Acanthamoeba sp. J. Protozool. 16: 428–431
Müller M. (1985) Search for cell organelles in protozoa. J. Protozool. 32: 559–563
Nachmias V. T. (1986) A study by electron microscopy of the formation of new surface by Chaos Chaos. Exp. Cell Res. 43: 583–601
Old K. M., Chakraborty S., Giggs R. (1985) Fine structure of a new mycophagous amoeba and its feeding on Cochliobolus sativus. Soil Biol. Biochem. 17: 645–655
Page F. C. (1977) The genus Thecamoeba (Protozoa, Gymnamoebia) Species distinctions, locomotive morphology, and protozoan prey. J. Nat. Hist. 11: 25–63
Pal R. A. (1972) The osmoregulatory system of the amoeba, Acanthamoeba castellanii. J. Exp. Biol. 57: 55–76
Patsyuk M. (2013) Tolerance of naked amoebas (Protista) to the abiotic factors. Nat. Montenegr. 12: 319–323
Pickup Z. L., Pickup R., Parry J. D. (2007) A comparison of the growth and starvation responses of Acanthamoeba castellanii and Hartmannella veriformis in the presence of suspended and attached Escherichia coli K12. FEMS Microbiol. Ecol. 59: 556–563
Pigon A. (1970) Hartmannella: Growth controlling substances in culture medium. Protoplasma 70: 405–414
Prescott L. M., Lottman J. K., Vance P. L. (1974) Carbohydrate metabolism in Acanthamoeba castellanii – II. Carbon dioxide fixation reactions. Comp. Biochem. Physiol. 48B: 205–209
Prusch R. D., Hannafin J. A. (1979) Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium. J. Gen. Physiol. 74: 523–535
Riddick D. H. (1968) Contractile vacuole in the amoeba, Pelomyxa carolinensis. Am. J Physiol. 215: 736–740
Rogerson A. (1979) Energy content of Amoeba proteus and Tetrahymena pyriformis (Protozoa). Can. J. Zool. 57: 2463–2465
Rogerson A. (1981) The ecological energetics of Amoeba proteus (Protozoa). Hydrobiologia 85: 117–128
Rogerson A., Butler H. G., Thompson J. C. (1994) Estimation of amoeba cell volume from nuclear diameter and its application to studies in protozoan ecology. Hydrobiologia 284: 229–234
Ryter A., Bowers B. (1976) Localization of acid phosphatase in Acanthamoeba castellanii with light and electron microscopy during growth and after phagocytosis. J. Ultrastruct. Res. 57: 309–321
Schuster F. L. (1979) Small amebas and ameboflagellates. In: Biochemistry and Physiology of Protozoa (2nd Ed., Vol. 1), (Ed. M. Levandowsky, H. M. Hutner), Academic Press, New York, pp. 216–287
Schulz F., Lagkouvardos I., Wascher F., Aistleitner K., Kostanjsek R., Horn M. (2014) Life in an unusual intracellular niche: A bacterial symbiont infecting the nucleus of amoebae. ISME J. 8: 1634–1644
Sopina V. A. (2003) Activity and thermostability of acid phosphatase in Amoebae Amoeba proteus cultured at different temperatures. J. Evol. Biochem. Phys. 39: 405–415
Tomlinson G. (1967) The glyoxylate pathway in Acanthamoeba sp. J. Protozool. 14: 114–116
Weik R. R., John D. T. (1977) Cell size, macromolecular composition, and O2 consumption during agitated cultivation of Naegleria gruberi. J. Protozool. 24: 196–200
Whatley J. M. (1976) Bacteria and nuclei in Pelomyxa palustris: Comments on the theory of serial endosymbiosis. New Phytol. 76: 111–120
Wigg D., Bovee E. C., Jahn T. L. (1967) Evacuation mechanism of the water expulsion vesicle (“contractile vacuole”) of Amoeba proteus. J. Protozool. 14: 104–108
Wilkins J. A., Thompson J. E. (1974) The effects of cell population density on the plasma membrane of Acanthamoeba castellanii. Exp. Cell Res. 89: 143–153
Physiology: Locomotion, reproduction, life cycle and evolution
Allen R. D. (1972) Pattern of birefringence in the giant amoeba, Chaos carolinensis. Exp. Cell Res. 72: 34–45
Anderson O. R. (2010) Field and laboratory studies of encysted and trophic stages of naked amoebae: Including a perspective on population life cycle dynamics. Acta Protozool. 49: 1–8
Akins R. A., Gozs S. M., Byers T. J. (1985) Factors regulating the encystment enhancing activity (EEA) of Acanthamoeba castellanii. J. Gen. Microbiol. 131: 2609–2617
Baldock B. M, Berger J. (1984) The effects of low temperatures on the growth of four fresh-water amoebae (Protozoa: Gymnamoebia). Trans. Am. Microsc. Soc. 103: 233–239
Baldock B. M., Baker J. H., Sleigh M. A. (1980) Laboratory growth rates of six species of freshwater Gymnamoebia. Oecologia 47: 156–159
Band R. N., Mohrlok S. (1969) The respiratory metabolism of Acanthamoeba rhysodes during encystation. J. Gen. Microbiol. 59: 351–358
Berney C., Geisen S., Van Wichelen J., Nitsche F., Vanormelingen P., Bonkowski M., Bass D. (2015) Expansion of the ‘Reticulosphere’: Diversity of novel branching and network-forming amoebae helps to define Variosea. Protist 166: 271–295.
Bowen S. M., Griffiths A. J., Lloyd D. (1969) Enzyme distribution in an amoeba during encystment. Biochem. J. 115: 41P–42P
Brewer J. E., Bell L. G. E. (1969) Pseudopodium induction by the action of quaternary ammonium ions on Amoeba proteus. J. Cell Sci. 4: 17–24
Cavalier-Smith T., Chao E. E., Lewis R. (2016) 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol. 99: 275–296
Chambers J. A., Thompson J. E. (1972) A scanning electron microscopic study of the excystment process of Acanthamoeba castellanii. Exp. Cell Res. 73: 415–421
Datta T. (1979) Effect of organic and inorganic compounds and carbon dioxide in the excystment of soil amoebae. Archiv f. Protistenk. 121: 155–161
Dembo M. (1989) Mechanics and control of the cytoskeleton in Amoeba proteus. Biophys. J. 55: 1053–1080
Feldherr C. M. (1968) Changes in the nuclear envelope of amoeba during mitosis. J. Cell Biol. 39: 49–54
Fouque E., Trouilhe M.-C., Thomas V., Hartemann P., Rodier M.-H.,
Fouque E., Trouilhe M.-C., Thomas V., Hartemann P., Rodier M.-H.,
Fouque E., Yefimova M., Trouilhe M.-C., Quellard N., Fernandez B., Rodier M.-H., Thomas V., Humeau P., Héchard Y. (2014b) Morphological study of the encystment and excystment of Vermamoeba vermiformis revealed original traits. J. Eukaryot. Microbiol. 62: 327–337
Grebecki A. (1982) Supramolecular aspects of amoeboid movement. Acta Protozool. Proceedings of VI International Congress of Protozoology, part I, pp. 117–130
Griffiths A. J. (1969) Encystment in amoebae. Adv. Microbial Physiol. 4: 105–129
Griffiths A. J., Bowen S. M. (1969) Lysosomal activity and its control in encysting Hartmannella castellanii. J. Gen. Microbiol. 59: 239–245
Griffiths A. J., Hughes D. E. (1969) The physiology of encystment of Hartmannella castellanii. J. Protozool. 16: 93–99
Holberton D. (1969) Microtubules in the cytoplasm of an amoeba. Nature 222: 680–681
Jahn T. L., Votta J. J., Kirby G. S., Rinaldi R. A., Cameron I. L., Allen R. D., Zeh R., Condellis J., Francis D. W. (1972) Capillary suction test of the pressure gradient theory of amoeboid motion. Science 177: 636–638
Jeon K. W., Bell L. G. E. (1965) Chemotaxis in a large, free-living amoebae. Exp. Cell Res. 38: 536–555
Jones P. C. T. (1966) A contractile protein model for cell adhesion. Nature 212: 365–369
Kang S., Tice A. K., Spiegel F. W., Silberman J. D., Pánek T., Cepicka I., Kostka M., Kosakyan A., Alcântara D. M. C., Roger A. J., Shadwick L. L., Smirnov A., Kudryavtsev A., Lahr D. J. G., Brown M. W. (2017) Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34: 2258–2270
King C. A., Preston T. M., Miller R. H. (1983) Cell-substrate interactions in amoeboid locomotion – a matched reflexion interference and transmission electron microscopy study. Cell Biol. Int. Rep. 7: 641–649
Klopocka W., Stockem W. (1989) High temperature-induced changes in the organization of the microfilament system and cell membrane activity in Amoeba proteus. Europ. J. Protistol. 24: 145–151
Lahr D. J. G., Parfrey L. W., Mitchell E. A. D., Katz L. A., Lara E. (2011) The chastity of amoebae: Re-evaluating evidence for sex in amoeboid organisms. Proc. R. Soc. B 278: 2081–2090
Lasman M. (1982) The fine structure of Acanthamoeba astronyxis, with special emphasis on encystment. J. Protozool. 29: 458–464
Lasman M., Shafran A. (1978) Induction of encystment in Acanthamoeba palestinensis. Factors influencing cyst formation. J. Protozool. 25: 489–491
Leitsch D., Köhsler M., Marchetti-Deschman M., Deutsch A.,
Lemgruber L., Lupetti P., De Souza W., Vommaro R. C., da Rocha-Azevedo B. (2010) The fine structure of Acanthamoeba polyphaga cyst wall. FEMS Microbiol. Lett. 305: 170–176
Lloyd D. (2014) Encystment in Acanthamoeba castellanii: A review. Expt. Parasitol. 145: S20–S27
Lorch I. J. (1969) The rate of attachment of amoebae to the substratum: A study of nuclear-cytoplasmic relationships. J. Cell Physiol. 73: 171–178
Maciver S. K. (2016) Asexual amoebae escape Muller’s ratchet through polypoidy. Trends Parasitol. 32: 855–862
Martin R. E. (1987) Adhesion, morphology, and locomotion of Paramoeba pemaquidensis Page (Amoebida, Paramoebidae): Effects of substrate charge density and external cations. J. Protozool. 34: 345–349
Martin S. M., Byers T. J. (1976) Acid hydrolase activity during growth and encystment in Acanthamoeba castellanii. J. Protozool. 23: 608–613
McIntyre J., Jenkin C. R. (1969) Chemotaxis in the free-living amoeba Hartmannella rhysodes. Aust. J. Exp. Med. Sci. 47: 625–632
Moon E.-K., Hong Y., Chung D.-I., Kong H.-H. (2012) Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol. Biochem. Parasit. 185: 121–126
Nohmi M., Tawada K. (1974) The negatively charged protein extracted from Tetrahymena pyriformis as an attractant in Amoeba proteus chemotaxis. J. Cell Physiol. 84: 135–140
Ord M. J. (1969) Control of DNA synthesis in Amoeba proteus. Nature 221: 964–966
Park J. T., Jeong Y. E., Ahn T. I. (2002) Changes in profiles of major proteins in encysting Acanthamoeba castellanii. Korean J. Biol. Sci. 6: 341–347
Pasternak J. J., Thompson J. E., Schultz T. M. G., Zachariah K. (1970) A scanning electron microscopic study of the encystment of Acanthamoeba castellanii. Exp. Cell Res. 60: 290–298
Pauls K. P., Thompson J. E. (1981) Regulation of fatty acid unsaturation in encysting Acanthamoeba cells. Curr. Microbiol. 5: 129–132
Pigon A. (1972) Inhibition of movement, attachment, and cytokinesis by autogenous substances in the Amoeba Hartmannella. Exp. Cell Res. 73: 170–176
Przelecka A., Sobota A. (1982) Growth phase dependent alterations in the surface coat of Acanthamoeba castellanii. Acta Histochem. 71: 219–229
Rogerson A. (1980) Generation times and reproductive rates of Amoeba proteus (Leidy) as influenced by temperature and food concentration. Can. J. Zool. 58: 543–548
Ron A., Prescott D. M. (1969) The timing of DNA synthesis in Amoeba proteus. Expt. Cell Res. 56: 430–434
Röpstorf P., Hülsmann N., Hausmann K. (1993) Karyological investigations on the vampyrellid filose amoeba Lateromyxa gallica Hülsmann 1993. Europ. J. Protistol. 29: 302–310
Schuster F. L. (1975) Ultrastructure of mitosis in the amoeboflagellate Naegleria gruberi. Tissue Cell 7: 1–12
Stevens A. R., Pachler P. F. (1973) RNA synthesis and turnover during density-inhibited growth and encystment of Acanthamoeba castellanii. J. Cell Biol. 57: 525–537
Stratford M. P., Griffiths A. J. (1971) Excystment of the amoeba Hartmannella castellanii. J. Gen. Microbiol. 66: 247–249
Sykes D. E., Band R. N. (1985) Polyphenol oxidase produced during encystation of Acanthamoeba castellanii. J. Protozool. 32: 512–517
Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. (1973) The contractile basis of amoeboid movement. J. Cell Biol. 59: 378–394
Tekle Y. I., Grant J., Anderson O. R., Nerad T. A., Cole J. C., Patterson D. J., Katz L. A. (2008) Phylogenetic placement of diverse amoebae inferred from multigene analyses and assessment of clade stability within ‘Amoebozoa’ upn removal of varying rate classes of SSU-rDNA. Mol. Phylogenet. Evol. 47: 339–352
Tekle Y. I., Anderson O. R., Lecky A. F. (2014) Evidence of parasexual activity in “Asexual amoebae” Cochliopodium spp. (Amobozoa): Extensive cellular and nuclear fusion. Protist 165: 676–687
Tekle Y. I., Williams J. R. (2017) Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion. Royal Soc. Open Sci. 3: 160283, DOI: 10.1098/rsos.160283
Tekle Y. I., Wood F. C., Katz L. A., Cerón-Romero M. A., Gorfu L. A. (2017) Amoebozoans are secretly but ancestrally sexual: Evidence for sex genes and potential novel crossover pathways in diverse groups of amoebae. Genome Biol. Evol. 9: 375–387
Tice A. K., Shadwick L. L., Fiore-Donno A. M., Geisen S., Kang S., Schuler G. A., Speigel F. W., Wilkinson K. A., Bonkowski M., Dumack K., Lahr D. J. G., Voelcker E., Clauss S., Zhang J., Brown M. W. (2016) Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Ameobozoa) and identification of a novel life cycle type within the group. Biology Direct 11: 69, doi.org/10.1186/s13062-016-0171-0
Turner N. A., Biagni G. A., Lloyd D. (1997) Anaerobiosis-induced differentiation of Acanthamoeba castellanii. FEMS Microbiol. Lett. 157: 149–153
Yang S., Villemez C. (1994) Cell surface control of differentiation in Acanthamoeba. J. Cell. Biochem. 56: 592–596
Weisman R. A., Spiegel R. S., McCauley J. G. (1970) Differentiation in Acanthamoeba: Glycogen levels and glycogen synthetase activity during encystment. Biochem. Biophys. Acta 201: 45–53
Information: Acta Protozoologica, 2018, Volume 57, Issue 1, pp. 1 - 28
Article type: Original article
Biology, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.
Published at: 19.09.2018
Article status: Open
Licence: CC BY-NC-ND
Percentage share of authors:
Article corrections:
-Publication languages:
EnglishView count: 3671
Number of downloads: 1973